Amiga User Interface Directions

by Martin Taillefer

The Amiga’s user interface is the most palpable aspect of the system. Users view the Amiga
through Intuition. It is therefore critical that Intuition, and its ancillary components, continue
to grow and become more functional and easier to operate.

This document outlines the major enhancements planned to the user interface. We wish to
show the general direction in which we are heading. There are no guarantees that any of the
material presented below is actually going to appear in the operating system.

Goals

There are two primary goals to current user interface developments:

Q Increased knowledge reuse
A key motivating factor behind the original design of graphical

user-interfaces was to increase the consistency and integration of personal
computing environments. The refinement of the UI must engender more
consistent applications, with a higher level of integration.

Q Shorter development cycles
Simplifying and abstracting the API can substantially reduce application

development time and development costs. This in turn promotes more and
higher quality applications to be created.

The focus of UI development is on high user-benefit items. What can we do in the operating
system that directly improves the usefulness and attractiveness of the system to current and
new users? What can we do to make the system look like the right answer to the user’s
problems? This is why much attention is devoted to small details that have often been
overlooked in the OS developments.

For example, putting a stronger emphasis on the graphical nature of the operating system.
Although this has little direct impact on the usability of the software, it substantially
improves its apparent quality and polish, which is an important consideration in the
marketplace.

International DevCon 1993 1 DevCon 93

Low-Level User Interface Components

Windows

Windows are the heart of the Amiga’s user interface. Their appearance, responsiveness,
behavior, and manageability, determine in large part how the system looks and feels to a
user.

Appearance

Amiga windows are fairly elegant, although there are a few details that could improve the
overall look of things:

O Variable Thickness Borders
Except for the top border, window borders are fixed in thickness.

Depending on the aspect ratio of the current screen, this might be adequate,
or might make the window look bad. The current thin borders are a
problem in high resolution modes where they become hard to see. The
border dimensions of windows should adapt to the aspect ratio of the
current screen, and should vary in width based on resolution. This also
includes making system gadgets wider or taller based on the resolution.

Another issue with window borders is the presence of the very wide and often useless border
needed when a sizing gadget is in place in a window. This is a big waste of screen real-estate
on low-resolution displays. It is also a factor of confusion as there is no visual distinction
between the drag bar and the blank useless borders. The blank borders can be removed by
using an alternate sizing method (see the next section).

Q Better Looking Titles
Along with variably-sized borders should come the repositioning of the

window title text. The text currently touches the top border of the window,
which looks quite bad and has often been reported as a bug in the system.

Q Consistent 3D Effect _
The current rendering for window borders does not create a consistent 3D

effect. There are some rendering bugs that defeat the 3D effect.

Q Better Looking Window Movement
The look of the user interface would greatly improved if windows were to

follow the mouse pointer as they are being moved, instead of simply an
outline of the windows. Whether this is actually implemented depends a lot
on the performance attainable.

DevCon 93 2 International DevCon 1993

Q Better Looking System Requesters
A mechanism similar to some PD utilities (ARQ) can be added to the

system, further enhancing the graphical appearance of the UL DOS
requesters can automatically start using standard glyphs in them to indicate
**disk full’’, or ‘‘please insert disk’’, and the EasyRequest() function can
be extended to accept glyphs.

Behavior And Manageability

Windows are central to the operation of the system. Their generality and functionality should
be maximized in order to remove as many hurdles as possible from the user attempting to
navigate through the system. The windowing system should be a transparent environment
that doesn’t call attention to itself. It should do its job, not impose limits to annoy the user,
and generally stay out of the way to allow real work to be done.

A few critical improvements can be made to our windowing system to substantially increase
the usability of the Amiga as a whole.

First and foremost is the restructuring of the depth arrangement strategy. The current scheme
in place since Release 2 has serious flaws. The main problem came with trying to shoehorn
window zooming into old applications. This required the replacement of the dual depth
arrangement gadgets by a single multi-function depth gadget. It is now very hard to depth
arrange windows in a predictable way. It often takes multiple clicks and a lot of trial and
error in order to get windows in the order you want them to be. Basically, the windowing
system gets in the way.

Most competing systems do not have explicit user control over window depth arrangement.
The active window is always brought to the front. We believe that user control over depth
arrangement is preferable, and required for compatibility.

Certain things can be done to help in depth arrangement:

Q Revert To 1.x Depth Gadgets
The original dual depth gadget scheme should be restored. It provided for

consistent and determinate behavior and was easily understood.

O Frontdrop Windows
Certain utilities, or components within larger applications, require that

specific windows always remain in front of other windows. For example, a
clock program might want to hover in front of all other windows. Or a tool
palette inside of a multi-window paint program would want to stay in front

International DevCon 1993 3 , DevCon 93

of all active canvases. Frontdrop windows would be another stratum of
windows, along the same lines as current backdrop and regular windows.
This stratum would be on top of regular windows. Although general
prioritized depth families could solve this problem in a general manner,
such a scheme is likely overkill.

An important feature is the ability to resize a window from any of its corners or sides.
Resizing a window currently involves locating and revealing the sizing gadget. Most window
borders are not used for anything except as delimiters. Overloading them with the ability to
resize the window provides a very nice increase in flexibility.

Another feature is the support of windows extending beyond the limits of their parent screen.
Given the fact many Amigas are used on low-res displays, it is quite important to allow
windows to be dragged off the sides of the display. It is much more important to do this on a
system with a small number of pixels than it is on a system with a megapixel display.

Off-screen windows are also central to supporting the new concept of window iconification.
The Zoom gadget introduced in Release 2 is a user interface failure. It has unpredictable
behavior. Beyond that, what it does is just not that useful. The ability to iconify a window
however is much more desirable from a user-standpoint, and can be substituted for the
current Zoom gadget’s functionality.

Clicking the Zoom gadget of a window will cause the system to move that window to a
totally off-screen position. An icon representing that application will be displayed on the
same screen the window was on. When the user double-clicks on the icon, the system
removes the icon and brings back the window to its original position.

New applications can ask to be notified of iconification events so they can free resources. For
example, a paint program can free pens that it had allocated, or a serial program can free the
serial port for use by other software.

Screens will also be iconifiable. Basically, every window on the screen will get iconified, and
then the screen is closed and turned into an icon on the Workbench screen. There are
compatibility issues such as applications caching screen pointers. If Intuition cannot be sure
that the screen owner and all visitors are aware of this new feature, the screen will be
delinked though the screen memory would not be freed.

DevCon 93 4 International DevCon 1993

Mouse Pointer
There are three main issues involving the mouse pointer.

The most important issue concerns the tendency for the mouse pointer to freeze during
lengthy Intuition operations such as layer handling, or when Intuition is blocked waiting for a
semaphore to unlock. This property gives a very bad feel to the system. Anytime a window is
opened, moved, sized, or closed, the whole system apparendy freezes for a few seconds. The
mouse stops moving and just sits there. On displays with many bitplanes, many windows,
and no fast ram, the wait can be well over one second, sometimes close to five or six seconds
(an A1200 running an 8 bitplane DbINTSC Workbench shows this). With all that said,
preliminary investigations show that correcting this problem can best be described as
extremely difficult, if not impossible.

The second pointer issue involves the inclusion of standard mouse pointer imagery for
common tasks. For example:

O Crosshair
 I-beam
O Object Selection Mode

Q + symbol for range demarcation

The third issue involves pointer positioning from the keyboard. The current scheme is very
difficult to use. A simpler and more functional approach is to use the left Amiga key qualifier
and the numeric keypad keys for directional control of the pointer. Amiga-0 would be the
equivalent of a left button click, and Amiga-Enter would be the equivalent of the right mouse
button. Consideration in this scheme must also be given to adequately handle “‘sticky keys’’
(described later in the Preferences section). Specifically, it must be possible to extend the
stickiness of the left Amiga key to cover multiple mouse moves in one press.

Gadgets

This section presents a series of new gadget classes aimed at improving the functionality of
our low-level system controls. These classes are often reimplementations of existing code,
but with an eye towards making them more extensible, flexible, enjoyable to use, and more
enjoyable to look at.

International DevCon 1993 5 DevCon 93

GadTools Objects

Although GadTools provided the framework needed to support our Ul look, its many
inherent limitations often become problems that application writers have to work around:

Q No Relativity
GadTools objects don’t support any form of positioning relativity, making
them difficult to use in sizable windows.

Q Not Extensible
GadTools objects do not support inheritance, making them impossible to

extend from within an application. You get what you get, nothing more.

Q Not Changeable
Once a GadTools object is created, it is impossible to change many of its

static attributes such as its label or font. The only way of accomplishing
these tasks is to remove all gadgets from the window and recreate them
from scratch.

Q Not Connectable
GadTools objects do not support any form of object interconnections. This

prevents the creation of ‘‘self-driven’” user interfaces, where the
application merely sets things up, and lets the UI objects do all the work by
themselves.

BOOPSI objects have none of the problems denoted above. They are as easy to use and
access as GadTools objects are, and quite a bit more flexible.

With this in mind, the obvious course to follow is to create a series of BOOPSI classes that
parallel in functionality the existing GadTools objects. The new objects would not have the
old problems and would add missing functionality along the way. Once the new classes are in
place, GadTools can become one of their clients. The main reason behind this move would be
to reduce the amount of redundant code in ROM. It also guarantees that the new classes
provide all of GadTools’ functionality, in a compatible and consistent manner.

The following sections go through the various new or modified BOOPSI classes, explaining
their basic functionality. Many of these classes are direct supersets of GadTools gadget kinds,
with extensions to address the needs of a more graphical and font-sensitive user interface.

One of the key enhancements that affects almost all gadget classes is the use of the
label.image class for the rendering of labels and other components of various gadgets. The
labelling class enables every gadget type to support multi-line labels with embedded
graphics. This makes the system much easier to localize and make font-sensitive.

DevCon 93 6 International DevCon 1993

Another enhancement to all classes is support for font-sensitive layout, where the gadgets can
be queried for various types of information about themselves, such as their preferred size, or
minimum size.

Finally, system classes that are intended for subclassing, such as gadgetclass, will be rounded
out to be more flexible and powerful. We intend on providing better documentation and
clearer guidelines on subclassing system classes to create your own classes, while retaining
future compatibility with super- class enhancements.

buttongclass

This class already exists and should be extended with:

Q New Look Borders
The class needs to be able to automatically render a border around a

gadget’s hit box. To give a bit more finesse to the look of these relatively
boring gadgets, rounded comers could replace the current square corners.

Q Variable Repeat Rate
The class needs to adapt its repeat rate based on a user preference setting.

checkbox.gadget

Checkbox gadgets are fairly intuitive and easy to understand. A few issues need to be
addressed:

Q Larger Clickable Region
Checkboxes present fairly small targets to mousers. This becomes a severe

problem on large displays with small rendering. It is also a problem for
handicapped users. Release 3 provides scalable checkmarks which helps a
lot. The obvious way to further extend the clickable region is to listen for
clicks on the checkbox’s label and treat them as clicks on the checkbox
itself.

There are a few open issues with checkbox gadgets:

Q How would multi-line text labels look next to checkboxes? Would they also
require a box around them to demark them clearly?

Q Since it is likely that glyphs and multi-line labels will require some form of
boxing, then would it be wise to always put a box around checkbox labels? This
could also be used to increase the clickable region of this gadget type.

Q The current rendering for the unselected state of a checkbox is simply an empty
box. Is this an adequate cue to the user?

International DevCon 1993 7 DevCon 93

radiobutton.gadget

Radio buttons provide an attractive alternative to cycle gadgets and listviews. They tend to
consume more screen real estate and more keyboard shortcuts than cycle gadgets and
listviews. Nevertheless, radio buttons should be used when possible because they are the
most intuitive type of gadget for the job: they clearly indicate all possible choices, and their
rendering increases the graphical content of a display. A few issues should be addressed to
make this type of gadget more palatable:

Q Strumming
The user should be able to strum the mouse across the items of a radio

button group. This would increase consistency with other gadget types.

Q@ Larger Clickable Region
Radio buttons exhibit the same problem as checkboxes, they also present

fairly small targets to mousers. As with checkboxes, the real solution is to
listen for clicks on the button’s label and treat them as clicks on the button
itself.

Q Delimitation
Also like checkboxes, radio buttons are currently fairly unbounded. This

becomes a problem when multiple columns of radio buttons are created.
Different grouping schemes can be used to help make things clearer.

Q Disabling Individual Buttons
Individual buttons of a radio button group can be disabled and enabled

independently.
popup.gadget

Cycle gadgets offer a nice compact alternative to radio buttons. However, the fact that not all
available choices are visible at once is nonintuitive. The solution to this problem is the
replacement of cycle gadgets with popup gadgets.

Clicking and holding down a popup gadget brings up a popup menu. You can then move the
mouse within the menu. Releasing the left mouse button while on top of an item makes that
item the current value of the popup gadget. Clicking the right mouse button while the menu is
up cancels the gadget operation and closes the menu.

A point of contention with popup gadgets is whether they should retain the cycling nature of
their ancestor the cycle gadget. A possibility is to keep the cycling behavior if the user clicks
in a specific area of the gadget and bring up a pop up menu if the user clicks elsewhere in the
gadget. Experiments will be conducted to find out whether this behavior is useful, tolerable,
and desirable.

DevCon 93 8 International DevCon 1993

listview.gadget

Listviews offer a flexible concept for presenting variable lists of items. GadTools listviews
however, have always been limited. This restricts their use, and prevents the easy realization
of many viable user interfaces. Some features can greatly enhance their usefulness:

Q Multi-Selection o
Multi-selection is the biggest feature missing in current listviews. This

ability is needed, for example, in the ASL file requester. ASL must
currently implement its own version of listviews because of this.

Q Drag Selection
Along with multi-selection comes drag selection. A group of items can be

selected by dragging the mouse over these items while holding down the
left mouse button.

Q Automatic Double-Click Detection
Many listviews benefit from directly supporting double-click selection of

items. Programmers forget this useful feature. Providing direct support for
the detection of double-clicks would encourage use of this. Double-click
support is useful as a shortcut for experienced users, making the system
more ‘‘upwardly mobile’’.

Q Horizontal Lists
It should be possible to create listviews that scroll data horizontally. This

helps in the creation of font-sensitive layouts.

Q Multi-Column Display
Many lists contain multiple fields of information for each item in the list.

Consider for example a file requester displaying a file’s name, size, and
creation date. Support for multi-column displays means that programmers
suddenly have the convenience to create listviews with multiple columns of
information, without concern for proportional fonts or inter-column
clipping. It also means that the user can optionally be given control over
the size and even existence of any of the columns of information. By
dragging a separator bar, the user can easily allocate more space for
filenames, and less for file dates. This is also a major issue in the ASL file
requester.

Q Secondary Scroll Bars
In better support of large fonts, it is necessary to support scrollers to let the

user move from left to right in a vertical scrolling list, or up and down in a
horizontal one. This lets a user push some columns of information outside
the visible area of a list, but still able to access them via the scroller.

’

International DevCon 1993 9 DevCon 93

scroller.gadget

Scroller gadgets are seldom used by themselves, and are mostly used as components in
listviews. A few improvements help make them more useful:

Q Border Support
Scroller gadgets work in window borders and are able to be embedded in

them. This is useful in many applications. It standardizes issues such as
repeating speed of the scroll arrows.

Q Better Looking Arrows
The arrows currently in use in scroller gadgets are not very attractive and

stand out in a world of snazzy looking 3D gadgetry. Arrow imagery should
be taken from sysiclass. sysiclass will need to acquire freely scalable
arrows instead of the currently limited arrows.

O Right Mouse Button Cancellation
Clicking the right mouse button while one of these gadgets is activated

terminates the activation and restores the scroller to its original value.

slider.gadget

The main improvements for slider gadgets will be:

Q Enhanced Imagery
The imagery should be more evocative than a simple black box. This

would improve the look of the UL It would also serve to distinguish sliders
from scrollers. These have a very different purpose in life, this fact is not
clear to the user since both gadget types currently look so much alike.
Options of the new imagery include tick marks, and track filling to the left
of (or below) the knob.

O Repeating Container
Clicking and holding the mouse in the container area of a slider gadget

should cause the slider to enter repeat mode and gradually move towards
the mouse.

textentry.gadget

Text gadget s are used by most applications and are the most limited type of system gadget.
Many enhancements are needed:

Q Multi_line Support
The biggest limitation of current text gadgets is their inability to handle multi-line data.

DevCon 93 10 International DevCon 1993

This new class will support multi-line editing and will include the use of optional
scrollers to enter large amounts of data. It will also offer automatic word-wrapping,
which is an important feature to make multi-line editing easier.

Q Text Editor Mode .
The multi-line support enables the simplification of a common Ul

composite object. The listview style in Workbench’s Information window
is a fairly complex gadget. It has a listview, a text gadget underneath it, and
an associated ‘“‘New’’ and “‘Del’’ pair of buttons. Operation of this
composite object is fairly complex and unnatural. To edit a string, you
must click on it within the listview area, but type the text into the text
gadget way at the bottom of the listview. Deleting items requires selecting
an item, which puts it into the text gadget, and then clicking the Del gadget.

Instead of the above composite listview object, a multi-line text gadget in
non word-wrap mode can be used. To edit a line, you click on it, and start
typing right on the place where you clicked. Text is not word wrapped and
causes the gadget to scroll towards the left as you add more text.

QO Cut And Paste
Clipboard cut and paste will be done in the expected manner.

Q Variable Cursor Styles
The cursor style will be under preference control. Vertical bar or block

cursors, blinking or not.

Q Standard Editing Rules
Text entry gadgets will offer a complete set of editing abilities, with clearly

defined behavior. Applications such as word processors are encouraged to
adopt the same style. This includes standard keyboard controls, standard
word selection algorithm, scrolling behavior, etc.

O Templates
This feature will allow a template to be provided to the text gadget, which

describes the format of the data the user is allowed to enter. This is the
main use programmers have for the current text gadget edit hook, provided
with a much simpler interface. A template is composed of commands and
literal text. The commands represent fields where data can be entered,
while the string literal are displayed as is by the text gadget. Templates
would allow easy creation of phone number gadgets, or ZIP code gadgets,
or floating-point gadgets.

International DevCon 1993 11 DevCon 93

Q Deselection Detection
A bug that occurs in many applications is when the contents of a text

gadget is only inspected whenever an IDCMP_GADGETUP event is
received. Since it is possible for a user to modify the contents of a gadget
without generating such a message, it is possible to have an application
miss changes made to the text. IDCMP_GADGETOFF, discussed below, is
the answer to this problem.

Q Optional History
Text entry gadgets will be able to optionally remember their previous

contents thus providing automatic history.

filereq.gadget

Over the years, there have been many requests for the ability to add an application’s own
custom gadgets to the standard file requester. This would not be a very flexible approach,
limiting the possible growth of the file requester. A much better approach is to create a
BOOPSI class which encapsulates the logic of the file requester.

The file requester class will allow the display of any given named directory. The class
implements the file requester’s scrolling list (or possibly two lists, one for directories and one
for files), and implements the file requester’s three text gadgets. A client of the class, such as
ASL, would simply embed the object within its window and send it messages asking it to
display various directories, show the parent directory, show the volume list, etc. The file
requester object would communicate selections made by the user back to the client. The
client will be responsible for the control buttons at the bottom of the current ASL file
requester (OK/Parent/Volumes/Cancel).

fontreq.gadget

This gadget type will exist for the same reasons the file requester class will. The class will
offer the font and size lists, and optional style, pens, and rendering mode controls. The ASL
requester’s sample section, as well as the control buttons, fall within the client’s domain, and
not in the class itself.

screenmodereq.gadget

Follows the same concept as filereq.gadget and fontreq.gadget. The screen mode-related
controls are in the class, and control gadgets remain in the client. Due to the vastly increased
number of modes available under RTG, a different approach will be used to allow mode
selection. The current flat list of modes becomes quite difficult to use when the system can
display hundreds of modes. The new approach will be criteria-based, where the user can ask

DevCon 93 12 International DevCon 1993

for a display that is 60Hz, 640x480 in 16 colors, and the system will figure out what is the
best mode to display that.

colorselector.gadget

This class will provide the functionality to implement a standard color requester. It will be
built-up from other object types including the colorwheel and the gradient slider.

printreq.gadget

This class will provide the functionality to implement a standard print requester within an
application. It will allow per-printer options, and finally offer a consistent printer interface to
the user. By providing printer-specific options, a printer driver could be written that controls
a FAX. The printer-specific options would then allow control of items such as the destination
phone number, header page, etc.

dragger.gadget

This class will allow the creation of draggable gadgets (icons). Draggable icons provide a
very clear and elegant solution to many UI problems. They are unfortunately quite difficult to
implement using the current system software, so almost no applications make use of them.

The dragger class will allow you to define an object on screen that the user can move around.
Various features will allow control of the object behavior. For example, object motion can be
restricted to within the current window, within windows of the same group, or allowed to go
to windows of other applications.

calendar.gadget

This class will be in support of system tools such as Time prefs or Agenda. The class will
provide a standard mechanism for the selection and display of dates. Features of this class
will include:

Q Renders a single page of a calendar

Q User can click to select one or multiple days in the month

Q Calendar pages can be made read-only

@ Individual days can be ghosted or rendered in a different color

Q Localization issues are handled transparently

International DevCon 1993 13 DevCon 93

pager.gadget

Some standard support needs to exist to create gadgets allowing the user to flip between
various option pages from within a single window. ‘‘Option pages’’ means a display like
PrinterPS which lets the user alternate between different sections of the available settings.

The technique currently in use in PrinterPS and Palette prefs involves a cycle gadget. This
has the unfortunate effect that users think the current value of the cycle gadget is in fact an
attribute maintained by the prefs editor, instead of a means to access additional settings. For
example, the cycle gadget in Palette prefs contains two states: “‘4 Color Settings’’ and
‘‘Multicolor Settings’’. Users are under the impression that the cycle gadget determines
whether the system is in *‘4 color mode”” or *‘multicolor mode’’. What the gadget really
means is that the 4 color settings or the multicolor settings are currently being displayed by
the program. The setting of the gadget is not a preferences item, merely a control of the prefs
editor.

To avoid the confusion, a different gadget style will be created to support this type of
concept. The gadget will operate in a manner similar to tabs in a book. By clicking on the
proper tab, you bring that page of the program on screen.

Font-Sensitive Layout

In order to completely support font-sensitive gadget layouts, the various system classes must
be modified to understand a few new features. The main feature is one that asks each gadget
what is its minimum size. This functionality is required in order to do true font-sensitive
layout. Since only the gadgets themselves can know this information, they need to supply it
to a client trying to use them in a UL

Another benefit of this technique is that gadgets can easily get bigger when new functionality
is needed. A gadget can grow and simply report its minimum size as larger. Using this
method, gadgets can adapt to different screen resolutions and render differenty (specifically,
the thickness of the gadget borders can be variable to suit different aspect ratios)

Keyboard Control

Support for keyboard control of gadgets is currently very limited. Many things can be done
by applications to fake it, some things are difficult, and some are impossible. Keyboard
control is an important feature for power-users. Once again, this is a case of upward mobility
of the system software. Keyboard control makes the system much faster to operate for
experienced users, while not getting in the way of novice users.

DevCon 93 14 Intemational DevCon 1993

We have already adopted the standard notation of an underlined letter to indicate the
keyboard shortcut for a gadget. We are lacking adequate support to implement the standard’s
functionality correctly. Intuition doesn’t have a very fine keyboard input focus. Our current
interface has two possible targets to keyboard events: the active text gadget or the active
window. This loose input focus can make certain things harder to do. For example, if there
are two listviews in a window, which listview gets scrolled when the cursor keys are hit?

The UI style guide offers some guidance in the area of keyboard control, but there is a
problem. A substantial amount of work is required on the part of application writers to
implement proper keyboard control. And certain things are even impossible to implement
legally (highlighting a button gadget programmatically). Current system support is limited to
underlining a character within a gadget’s label. That’s not enough. We need to:

QO Enable classes to inspect their labels to determine what is their keyboard
shortcut. If no label is given, an explicit tag could be passed by the
application giving the key to watch for.

Q Enable classes to look at keyboard input as it is generated, and act in
consequence. The key sequence would be swallowed and a message
sent to the application in a manner similar to a direct gadget click.

With the above functionality in place, it becomes easy to set up keyboard shortcuts for an
application’s gadgets. Localization of these is also easy, as only the label of the gadget needs
to change to have the keyboard shortcuts change with it. Input handling for the shortcuts is
automatically done by the gadget classes, in the manner that best suits them. For example, a
scroller would use its key shortcut to increase its value, while the same shortcut with the
SHIFT key down would decrease it. The colorwheel class could use multiple qualifier to
control the direction of its knob. Etc.

The style guide currently recommends using regular keystrokes as shortcuts for gadgets. This
works best for windows that have no (or few) text entry areas. The left Amiga key can
provide a stateless method of activating gadgets.

Images

The creation of sophisticated graphical and font-sensitive UI displays has always been a
difficult task. Creating glyphs that are compact, quickly rendered, scalable, and correctly
color mapped, is such a hassle that application developers generally don’t bother.

Increasing the graphical appearance of the system can be made somewhat easier with the
addition of a few basic BOOPSI image classes. The classes attempt to simplify the creation
of font-sensitive displays containing graphics, as well as improve consistency of the UL

International DevCon 1993 15 DevCon 93

label.image

A generic labelling class which can be used on its own, and is used by all gadgets classes for
the rendering of their labels. The features of the labelling class will be:

Q Stand-Alone Or Linked Use
Label images will be able to be used on their own in much the same way

TEXT_KIND gadgets are today. They can also be used as labels to gadget
types.
Q Multi-Line Labels

Supports the creation of multi-line labels by embedding line-feeds within
the label. Localization often generates much longer strings than the original
English ones, and the ability to transparently split the text onto multiple
lines greatly improves the appearance of both the original and localized
version of an application.

O Automatic Word-Wrapping
Also in support of localization, automatic word-wrapping helps Ul layout

tremendously. The application provides a box and some text, and the class
ensures that everything fits within it.

Q Glyph Layout
It is important that any text label be able to incorporate glyphs. The mini

layout engine needed to do the word-wrapping also handles embedded
images automatically.

@ Keyboard Shortcut Indicator
The class supports underlining a single character within a label, to denote a

keyboard shortcut.

drawlist.image

This class allows the creation of simple graphics in a resolution independent manner. The
client defines the imagery in terms of commands in an abstract coordinate system, and the
class arranges to scale everything to the requested pixel size upon rendering.

glyph.image
This class provides a series of predefined system glyphs rendered using the drawlist class.

These glyphs would be used throughout the system and would become quickly familiar to
users. This further increases consistency of the Ul Standard glyphs could include:

DevCon 93 16 Intemnational DevCon 1993

Q Warning symbol

Q Fatal Error

Q VCR control symbols (Play, Stop, Pause, etc.)

U Help symbol

Q “‘For your information’’ symbol

Q Key top symbol (Function key, Help key, Alt, Ctrl, etc.)
fuelgauge.image
This class will be used by any applications needing to show the progress of a task. The class
will offer standard rendering for a fuel gauge, with the following features:

Q Horizontal or vertical orientation

QU Optional tick marks below or to the right the gauge

O Optional milestone indicators (0, 50, 100%) rendered below or to the
right of the gauge.

Q Optional current percentage done indicator rendered to the left or right
of the gauge.

frameiclass

This class needs to learn about two new features:

Q Titled Frames
The frames created by this class should be able to have a title embedded in

the top line of the frame. This would support the rendering of radio button
borders, and is generally useful to separate a window into gadget groups.

O Rounded Corners
Frames with rounded comers are needed to support the new look for button

borders.

Menus

The Amiga benefits from a flexible menuing system which has always had the ability to
remain hidden and out of the way of the user. This is of great value on low-resolution
displays. However, menus do require some work to better support higher resolution displays
and add general functionality.

International DevCon 1993 17 DevCon 93

One of the points to watch for in a user interface is the minimization of mouse travel to
accomplish common tasks. The current menuing system can lead to very large amounts of
mouse travel on large displays, since the menu strip always appears at the top of the display.
In addition, the horizontal organization of the menu strip requires a full horizontal sweep of
the display to access all menus. :

Both problems can be solved by making menu headers appear in a stack under the mouse
pointer. This avoids the need to move the mouse to the top of the display to view the menus,
and significantly reduces required mouse travel to scan through all the menus.

Additional functionality becomes possible with this new menu organization:

Q Moving Menus
While the user is holding down the mouse button over a menu page, if he

moves the mouse over the ‘‘move menu’’ section of the menu, and presses
the left mouse button, the menu starts to follow the mouse. When the left
mouse button is released, the menu is dropped in place and menuing
operations resume as normal.

Q Nailing Menus
By moving the mouse over the ‘‘nail’” icon in a menu and clicking the left

mouse button, a menu can be turned into a window. This window is
managed totally by the system. Menu items are converted into appropriate
gadget types and selections made in this window are converted to
corresponding menu selections and sent to the application. The ability to
nail a menu to the screen enables the user to easily display often used
commands on the screen where they become instantly available with a
single mouse click.

O Amiga Menu
The main menu page for an application contains an ‘‘Amiga’ menu, which

provides a handy place for the system to add standard functionality to
existing applications. Moving the mouse to the checkmark glyph reveals
the Amiga menu. It contains standard commands including a list of
common tools the user might want to start (Calculator, Agenda, etc.). This
is similar to the current Tools menu in Workbench, but is much more
general. The Amiga menu enables the easy addition of new items managed
by the system. For example, a selection to bring up a list of running
applications, or a list of available public screens, etc.

Q Keyboard Navigation
Keyboard navigation of the menus is another feature which becomes easier

with the new menu organization. A standard keyboard sequence is entered

DevCon 93 18 International DevCon 1993

which causes the main menu page to be displayed. The menu can be
cancelled by pressing Esc. The selected item is moved around by using the
cursor keys. Pressing RETURN either brings up a submenu, or selects an
item.

Q Visually Distinctive Mutually Exclusive Selections
There needs to be special rendering to identify mutually exclusive menu

items. They currently share the imagery of checkable items, which is
misleading to the user.

Another important feature to improve menus involves submenu delays. Intuition would
interpret high-speed mouse travel as meaning ‘‘don’t change the state of which menu panels
are up and which aren’t’’. This would allow the user to ‘‘cut the corner’’ when heading
towards a submenu, without fear of accidentally triggering some other submenu along the
way. ‘

Preferences

The ability to customize the work environment is one of the big features of modern user
interfaces. It gives users an important sense of being in control. It allows them to become
more productive as the computer can automatically adapt to their tastes, and not the opposite.

The Amiga has always had a rich variety of controllable attributes. In some respects, it has
too many. One of the purposes of this section is to review the different preferences choices
that we currently have, and see what additional functionality is needed. Another purpose is to
find ways to increase the graphical contents of the preferences editors. Careful consideration
is given to avoid overwhelming the user with too many options.

Fonts Prefs

Beyond an interface update, Font prefs needs to support the selection of more font types. The
selection is currently very limited and doesn’t allow adequate selections to cater to high
resolution displays in a pleasing manner. The new font selections include:

Q Window Title Font
Q Screen Title Font
U Menu Font

O UI Font

QO Shell Font

International DevCon 1993 19 DevCon 93

Keyboard Prefs

This is a new program which provides half of the functionality previously contained in the
Input prefs editor.

Q Integrated KeyShow
This shows the layout of the different keymaps as they are being selected.

It eliminates KeyShow as a stand-alone utility.

Mouse Prefs

This is a new program which provides the other half of the functionality previously contained
in the Input prefs editor.

Q Swap Mouse Buttons
Will let the user swap the functionality of the mouse buttons. This makes

the system feel more natural to new left handed users. The selection button
can then always be under the user’s index finger, where it belong.

Q Sticky Keys
Sticky keys is a feature which makes it possible for users with hand
coordination problems, or users with one or no functioning hand, to use a
keyboard. Sticky keys causes qualifier keys such as SHIFT or ALT to be
typed in separately from regular keys. A user can then generate an “A” by
pressing the SHIFT key, release it, and press the A key.

Q Cursor Selection
This will allow a specific cursor style to be chosen for use in text gadgets,

consoles. and applications. Choices include block and bar cursors, blinking
or static, and the blink rate.

Q Mouse Blanking
The MouseBlanker commodity program will be replaced by a checkbox

option in Mouse prefs. When turned on, the mouse pointer is blanker
whenever a key is entered. This will eliminate a Workbench program and
will mainstream this useful functionality.

Palette Prefs

To complete the implementation of the V39 palette preferences scheme, more pens need to
be added to the system:

Q Text Gadget Colors
Q Screen Title Bar Color
(Cursor Color

DevCon 93 20 International DevCon 1993

Locale Prefs

The individual parameters currently controlled by the country selection in Locale prefs will
become individually controlled. This will let users pick exactly which date or number format
to use, instead of forcing per-country selections. The current country selections will become
presets that automatically adjust all the editable fields to match the exact specifications for
each country.

WBPattern Prefs

WBPattern should support centering and tiling of its backdrop pictures. This would improve
the appearance and usefulness of using smaller pictures. It would also look better when
switching the screen mode of the Workbench screen, without changing the picture.

Sound Prefs

Multiple types of beeps should be supported, each indicating something different:
O Warning
Q Fatal Error
O Attention
Q Task Completion

The different sounds give important feedback to the user when something happens.
Window Prefs

A new preferences program offering the following options:

Q AutoPoint Integration
AutoPoint is a feature many users like. The current implementation is less

than ideal as it is external to the windowing system. It also consumes a fair
amount of memory and CPU time. Integrating autopoint functionality
directly in Intuition eliminates memory requirements, and reduces
additional CPU time consumed to almost nothing. Putting the option in the
prefs editor also eliminates an obscure program from the system disks.

Q ClickToFront Integration _ . .
For much the same reasons as integrating AutoPoint in Intuition, it is wise

to also integrate ClickToFront.

International DevCon 1993 21 DevCon 93

Q System Requester Positioning
Many users want to have system requesters appear in locations other than

in the top left of the display. The user could choose to have the requesters
positioned in any of the screen corners, have them centered, or have them
appear under the mouse.

Q Border Control
Control can be provided to alter the size of window borders.

ScreenMode Prefs

The current method for specifying screen modes is not intuitive. The variety of modes is
overwhelming, and the current organization doesn’t help the user understand the selection he
is about to make. The future holds many more modes in support of AAA graphics, so a new
approach must be devised to simplify the selection of modes names. The technique used in
the ScreenMode preferences can also be directly applied to the ASL ScreenMode requester
which will benefit applications.

Monitor Prefs

Monitor prefs will be a replacement for Overscan prefs. It will be functionally the same, with
a few changes.

The major change will be the ability to control the aspect ratio for the various scan rates. This
could be done by adding an extra gadget to the main window of the form ‘“Edit Aspect
Ratio’’, which brings up a screen where the user could graphically view and edit the aspect
ratio of the scan rate.

Printer, PrinterGfx, and PrinterPS Prefs

Printer and PrinterGfx would greatly benefit from a face lift to give them the same basic
interface as PrinterP$ has. The ability to graphically edit the print attributes makes print
control substantially easier. The current method used is very terse, complicated, and almost
impossible to fully understand without having a manual in arm’s reach.

These three program wﬁl also be merged into a single entity, which will use the pager.gadget
to flip between the different option pages.

Pointer Prefs

Pointer prefs will be extended to support editing of the various pointer types added to the
system’s pointer class.

DevCon 93 22 International DevCon 1993

Default Preferences

The default set of preferences shipped with the system will be examined and updated if
appropriate. Of specific interest are things that make the system look better in its default
configuration. Possibilities include:

Q Use of a proportional font as default

Q Use of a higher resolution mode as default

Q Use of more colors by default

Q Use of a default Workbench backdrop pattern

QO Use of centered system requesters

Programmability

There are a large number of subtleties in the Amiga’s API. A few things can be done to
substantially reduce programmer exposure to these subtleties. Following is a brief summary
of the miscellaneous enhancements planned that will simplify the lives of programmers.

Windows

Q RastPort Clipping
Two new features of future versions of graphics.library are RastPort-based

clipping and RastPort-specific rendering origins. Once combined, these
two features offer a lot to the Intuition programmer. Functionality similar
to GimmeZeroZero windows can be provided using these features, without
suffering all the performance problems of traditional GZZ windows. It also
becomes possible to create separate panes within a window, each pane
providing its own clipping, and its own rendering origin.

O Smarter Window Refroshin%
Simple refresh layers could be made smarter. They would work mostly like

current smart refresh windows, but would have the ability to dispose of
allocated off-screen buffers when a memory panic occurs in the system.
The reason for this window type is to enhance the performance of the
windowing system. When possible, the very fast smart refresh algorithm is
used, but if a memory failure occurs, the window behaves like if it was old
style simple refresh.

International DevCon 1993 23 DevCon 93

O Window Limit Specifications
The ability to specify that the minimum and maximum dimensions of a

window are to be interpreted as meaning ‘‘dimensions of the inner window
region’’ would be of great help. These are currently very difficult values to
set up correctly.

Q Window Fonts
The ability to specify fonts to use in the window’s title bar, and in the

window’s interior would add useful functionality and avoid much
programmer work.

O Window Ports
Large applications frequently take advantage of the ability to share a single

UserPort among several windows, but this adds some arcane complexity
and ugliness to the code. A WA_UserPort tag would clean this up nicely,
as well as mark that window in need of CloseWindowSafely() style
processing inside Intuition.

O Window Menus
The ability to specify a menu strip to use in a window when the window is

opened and the ability to close a window without having to call
ClearMenuStrip() are two simple enhancements to make life simpler.

Q Window Event Buffering
There is a need to buffer events that occur in a window prior to the

window being completely ready to accept input. For example, when users
bring up the file requester via keyboard shortcut, they start typing in their
filename immediately after hitting the shortcut key. The problem is that
the file requester is not ready to accept input yet. The result being the first
few characters entered by the user for the filename are lost.

It is also fairly tricky to activate a string gadget in a window that is
opening. Although this is better in V39, problems still exist. The
application has to wait to receive an ‘“‘IDCMP_ACTIVEWINDOW"’ event
before it should try to activate the gadget. This is too much voodoo.

A way to solve both problems is to introduce a new OpenWindow() tag
that means “‘this is the gadget that should be activated’’. Intuition would
then buffer up any input events that occur while the window is in process
of opening, and would send them all in one big gulp to the window when it
is ready to receive them. It would also auto-activate the appropriate gadget,
to make sure any keyboard sequences that are intended for it actually reach
it.

DevCon 93 24 International DevCon 1993

QO HideWindow()/ExposeWindow() Functions
These functions would move the given window totally off-screen, and

would bring it back to its original location. The ExposeWindow() function
can be used in concert with the ability to open a window in the hidden
state. This lets an application completely render its window imagery, and
once done rendered, blast it onto the screen in one blit by using
ExposeWindow(). Not only will rendering in the window go faster because
of the reduced number of clipping rectangles, it will also look a lot nicer to
the user.

Q ToolBox Windows
ToolBox windows provide services to other windows. For example, a strip

of tools shared across many document windows in an application. Intuition
can help coordinate the toolbox window with respect to its parent.

Q Unified Windows and Requesters
This concept means having a window with the basic desirable properties

currently only available through a requester: locking of parent window
(either as a new property of some windows or through a LockWindow()
call), and some kind of parent/child arrangement for depth/size.

@ Better support for autoscroll screens
We can think of a few ways to make the use of autoscroll screens more

convenient, including autoscrolling before the mouse has hit the very edge
of the display, and automatic scrolling of the screen to bring newly opened
windows into view.

Q Screen locking
This is basically an Intuition-friendly LockLayers() function. The

advantage over LockLayers() is that it would be safe to continue to transact
with Intuition without fear of deadlocking. This function would be used by
programs which need to do trans-window rendering such as custom pop-up
menus or draggable icons.

Gadgets and Images

Q IDCMP_GADGETOFF
A partner of IDCMP_GADGETUP. It tells you when a gadget’s activation

state is terminated, but no IDCMP_GADGETUP was sent.

O DrawlmageStateFrame()
New function that sends the IM_DRAWFRAME method to the image

object, instead of IM_DRAW.

International DevCon 1993 25 DevCon 93

Q IDCMP MOUSEMOVE
IDCMP_MOUSEMOVE events generated because of a gadget should

have the gadget pointer in the IAddress of the IntuiMessage, if the window
requests it.

Q BOOPSI
Autoknob Support Allow the combination of the sizing properties of an

autoknob with the custom image capabilities of a BOOPSI image.
Currently, you can have either one but not both.

O GMORE_FULLYRENDER
Gadget flag which says ‘I fully render in my hitbox’’ or *‘I fully render in

my bounding box.”” We could skip erasing GREL gadgets in the area that
intersects their new position (or the new position of any other gadget with

this property).

O SGH _INITIAL
String edit hooks should receive a SGH_INITIAL message to validate
contents on startup, and possibly a SGH_FINAL on exit.

Tool Port

A new unifying concept of IPC is being developed which will greatly simplify the job of
writing applications on the Amiga. '

A tool port provides a central communication point for an application. All IPC directed to
this application are funneled through the port. The definition of the port interface allows
unlimited growth and expansion. Routers can easily be added by the application to direct
different message types to different locations. All system communications, such as IDCMP
or ARexx messages, will come into the tool port in a standard format.

The tool port will finally gives the system something it always lacked which is a unique
handle by which an application formally identifies itself, and makes itself available to the
outside world. The tool port will provide a set of pre-defined events, such as ‘‘shutdown”’,
“‘show yourself”’, ‘‘open a file””, etc., enabling the creation of system control tools.

The tool port will also simplify the programming model. All input coming into an application
will come from a unique source. This serialization of messages guarantees correct processing
sequence across all applications.

DevCon 93 26 International DevCon 1993

General Changes

There are a few general improvements that will affect most tools that come with the system
software, and will benefit end-users and application writers.

Font-Sensitivity

All GUI-based system tools will become font-sensitive. This will let them adapt to any font
the user chooses for his system. The layout task will be off-loaded to a new library called
layout.library. This library will offer a generic rectangle layout engine, enabling effective
font-sensitive layout.

layout.library will operate on a hierarchical organization of rectangles. Each rectangle
describes its place within its parent rectangle. A rectangle can define its size in relation to its
siblings, relative to the parent size, with a fixed number of pixels, etc. The layout procedure
involves an iterative negotiation between the library and the rectangles, that causes the size
and position of the rectangle to constantly adjust, until the requirements of all the rectangles
are met.

On-Line Help

V39 added the necessary hooks to implement full context-sensitive help in applications. We
plan on making all system tools provide help by making use of these mechanism. Some
minimal additional support will likely be added to the new BOOPSI classes to make them
easier to deal with. For example, each class can provide help about itself. In addition, some
minor extensions to AmigaGuide are likely to happen, in order to make on-line help more
usable. For example, support for simple help windows, where there are no prop gadgets, no
system gadgets, and no AmigaGuide gadgets, could be handy to create light-weight help
boxes.

Workbench

We are planning a complete rewrite and substantial redesign of the Workbench interface for
the future. We are expecting a increase in performance, reduction in quirkiness, and
substantial increase in functionality. However, plans are currently not detailed enough to be
discussed.

As part of the Workbench rewrite, a tie-in with the ASL file requester will likely occur. The
file requester will become a client of Workbench and will use its code to display file

information. This will offer the user a consistent visual interface to the file system.
L 4

International DevCon 1993 27 DevCon 93

