

Tripos User's Referenc e EDIT

L appears with the null string, it matches with the end of the line. (That
is, look leftwards from the end of the line for an occurrence of nothing.)

P
where th e lin e mus t matc h th e strin g Precisel y an d mus t containn o
other characters.P mustnotappear withB,E,orL.IfP appears witha
null string, it matches with an empty line.

U
where th e strin g matc histo take place whetherornotupperorlower
caseisused. (Thatis, as though you translated both the stringandthe
line into Uppercase letter s before comparin g them.) For example, whe n
you specify U, the following strin g

/TWEEDledum/
should match a line containing

TweedleDUM

as well as any other combination in upper or lower case.

3.2.2.5 Output Processin g

EDIT does not write lines read ina forward direction to the destinatio n
file immediately , butinsteaditadds themto anoutputqueueinmain
memory. When EDIT has used up the memory available for such lines, it
writes outthe lines atthe heado fthe queue asnecessary. Until EDI T
has actually written outa line to the destination file, you can move back
and make it the current line again.

Youcan also send portionsofthe outputto destination file s other tha n

TO. When you select an alternative destination file, EDIT writes out the
queue of lines for the current output file.

3-23

EDIT Tripos User's Reference

3.2.2.6 End-of-File Handling

When EDIT reaches the end of a source file, a dummy end-of-file line
becomes current. This end-of-file line has a line number one greater than
the number of lines in the file. EDIT verifies the line by displaying the
line number and an asterisk.

When the end-of-file line is current, commands to make changes to the
current line, and commands to move forward, produce an error.
Although, if you contain these kinds of commands within an infinitely
repeating group, EDIT does not give an error on reaching the end-of-file
line. The E (Exchange) command is an example of a command to make
changes to the current line. The N (Next) command is an example of a
command to move forward.

3.2.3 Functional Groupings of EDIT Commands

This section contains descriptions of all EDIT commands split up by
function. A summary and an alphabetic list of commands appear later.

The following descriptions use slashes (/) to indicate delimiter characters
(that is, characters that enclose strings). Command names appear in
upper case; argument types appear in lower case as follows:

Notation Description
a,b line numbers (or . or *)
cg command group
m,n numbers
q qualifier list (possibly empty)
se search expression
s, t strings of arbitrary characters
SW switch value (+ or-)
/ string delimiter

Table 3.1 Notation for Command Descriptions

3-24

Tripos User's Reference EDIT

Note: Command descriptions that appear in the rest of this manual with
the above notation show the SYNTAX of the command; they are not
examples of what you actually type. Examples always appear as follows
in

this typeface.

3.2.3.1 Selection of a Current Line

These commands have no function other than to select a new current
line. EDIT adds lines that it has passed in a forward direction to the
destination output queue (for further details on the output queue, see
Section 3.1, Introducing EDIT). EDIT queues up lines that it has passed
in a backward direction ready for subsequent reprocessing in a forward
direction. M takes a line number, period, or asterisk. So, using the
command notation described above, the correct syntax for M is as
follows:

Ma

where Ma moves forward or backward to line ‘a' in the source. Only
original lines can be accessed by line number.

M+

makes the last line actually read from the file current line. M+ moves
through all the lines currently held in memory until the last one is
reached.

M-

makes the last line on the output queue current. This is like saying to
EDIT: 'move back as far as you can.’

N
moves forward to the next line in the source. When the current line is the
last line of the source, executing an N command does not create an error.

EDIT increases the line number by adding one to it and creates a special

3-25

EDIT Tripos User's Reference

end-of-file line. However, if you try to use an N command when you are
already at the end of the source file, EDIT returns an error.

P

moves back to the previous line. You can move more than one line back
by either repeating P, or giving a number before it. The number that you
give should be equal to the number of lines you want to move back.

The syntax for the F (Find) command is
F se

So, F finds the line you specify with the search expression 'se'. The search
starts at the current line and moves forward through the source. The
search starts at the current line in order to cover the case where the
current line has been reached as a side effect of previous commands -
such as line deletion. An F command with no argument searches using
the last executed search expression.

The syntax for the BF (Backwards Find) command is
BF se

BF behaves like F except that it starts at the current line and moves
backward until it finds a line that matches its search expression.

3.2.3.2 Line Insertion and Deletion

Commands may select a new current line as a side effect of their main
function. Those followed by in-line insertion material must be the last
command on a line. The insertion material is on successive lines
terminated by Z on a line by itself. You can use the Z command to change
the terminator. EDIT recognizes the terminator you give in either upper
or lower case. For example, using the same notation,

3-26

Tripos User's Reference EDIT

Ia

<insertion material, as many
lines as necessary >

Z

inserts the insertion material before 'a'. Remember that 'a’ can be a
specific line number, a period (representing the current line), or an
asterisk (representing the last line of the source file). If you omit a, EDIT
inserts the material before the current line; otherwise, line a becomes
the current line.

I/s/

inserts the contents of the file s (remember, 's' means any string) before
the current line.

Rab

<replacement material >
Z

Rab/s/

The R command is equivalent to D followed by I. The second line number
must be greater than or equal to the first. You may omit the second
number if you want to replace just the one line (that is, if b=a). You may
omit both numbers if you want to replace the current line. The line
following line b becomes the new current line.

The syntax for the D (Delete) command is as follows:

Dab
So, D deletes all lines from a to b inclusive. You may omit the second line
number if you want to delete just the one line (that is, if b=a). You may
omit both numbers if you want to delete the current line. The line
following line b becomes the new current line.

The syntax of the DF (Delete Find) command is

DF se

3-27

EDIT Tripos User's Reference

The command DF (Delete Find) tells EDIT to delete successive lines from
the source until it finds a line matching the search expression. This line
then becomes the new current line. A DF command with no argument
searches (deleting as it goes) using the last search expression you typed.

3.2.4 Line Windows

EDIT usually acts on a complete current line. However, you can define
parts of the line where EDIT can execute your subsequent commands.
These parts of lines are called line windows. This section describes the
commands you use to define a window.

3.2.4.1 The Operational Window

EDIT usually scans all the characters in a line when looking for a given
string. However it is possible to specify a 'line window', so that the scan
for a character starts at the beginning of the window, and not the start of
the line. In all the descriptions of EDIT context commands, ‘'the
beginning of the line' always means 'the beginning of the operational
window"'.

Whenever EDIT verifies a current line, it indicates the position of the
operational window by displaying a '>" character directly beneath the
line. For example in the following

26.
This is line 26 this is.
>

the operational window contains the characters to the right of the
pointer: 'line 26 this is.". EDIT omits the indicator if it is at the start of
the line.

The left edge of the window is also called the character pointer in this
context, and the following commands are available for moving it:

3-28

Tripos User's Reference EDIT

>
moves the pointer one character to the right.

<
moves the pointer one character to the left.

PR
Pointer Reset sets the pointer to the start of the line.
The syntax for the PA (Point After) command is

PA q/s/

Point After sets the pointer so that the first character in the window is
the first character following the string s. For example,

PA L//

moves the pointer to the end of the line.

The syntax for the PB (Point Before) command is
PB q/s/

Point Before is the same as PA, but includes the string itself in the
window.

3-29

EDIT Tripos User's Reference

3.2.4.2 Single Character Operations on the Current Line
The following two commands move the character pointer one place to the
right after forcing the first letter into either upper or lower case. If the
first character is not a letter, or is already in the required case, these
commands are equivalent to >.
The command

S
forces lower case (Dollar for Down).
The command

S

forces upper case (Percent for uP).

The' '(underscore) command changes the first character in the window

into a space character, then moves the character pointer one place to the
right.

The command
#
deletes the first character in the window. The remainder of the window

moves one character to the left, leaving the character pointer pointing at
the next character in the line. The command is exactly equivalent to

E/sl/
where s is the first character in the window. To repeat the effect, you
specify a number before the "#' command. If the value is n, for example,

then the repeated command is equivalent to the single command

E/s//

3-30

Tripos User's Reference EDIT

where s is the first n characters in the window or the whole of the
contents of the window, whichever is the shorter. Consider the following
example: i

54

deletes the next five characters in the window. If you type a number
equal to or greater than the number of characters in the window, EDIT
deletes the contents of the entire window. EDIT treats a sequence of '#'
commands in the same way as a single, repeated '#' command. So,
is the same as typing a single #, pressing RETURN after each
single #, five times.

You can use a combination of '>''%''$''_' and '#' commands to edit a
line character by character, the commands appearing under the
characters they affect. The following text and commands illustrate this:

O Oysters,, Come ANDDWALK with us
>G5 SSSSH#>>SSSSSSSS_SSSSSSSSSSHH#

The commands in the example above change the line to
O oysters, come and walk with us

leaving the character pointer immediately before the word 'us’.

3.2.5 String Operations on the Current Line
To specify which part of the current line to qualify, you can either alter

the basic string or point to a variant, as described in the next two
sections.

3-31

EDIT Tripos User's Reference

3.2.5.1 Basic String Operations

Three similar commands are available for altering parts of the current
line. The A, B and E commands insert their second (string) argument
After, Before, or in Exchange for their first argument respectively. You
may qualify the first argument. If the current line were

The Carpenter beseech
then the commands
E U/carpenter/Walrus/ Exchange

B/bese/did / Insert string before
AL//;/ Insert string after

would change the line to

The Walrus did beseech;

3.2.5.2 The Null String

You can use the null, or empty string (/) after any string command. If
you use the null string as the second string in an E command, EDIT
removes the first string from the line. Provided EDIT finds the first
string, an A or B command with a null second string does nothing;
otherwise, EDIT returns an error. A null first string in any of the three
commands matches at the initial search position. The initial search
position is the current character position (initially the beginning of the
line) unless either of the E or L qualifiers is present, in which case the
initial position is the end of the line. For example,

A//carpenter/

puts the text carpenter After nothing, that is, at the beginning of the
line. Whereas

A L//carpenter

3-32

Tripos User's Reference EDIT

puts carpenter at the end of the line After the Last nothing.

3.2.5.3 Pointing Variant
The AP (insert After and Point), BP (insert Before and Point), and EP
(Exchange and Point) commands take two strings as arguments and act
exactly like A, B, and E. However, AP, BP, and EP have an additional
feature: when the operation is complete, the character pointer is left
pointing to the first character following both text strings. So, using the
same command syntax notation,

AP/s/t/
is equivalent to

Alsitl; PA/st/
while

BP/s/t/
is equivalent to

B/s/t/, PA/ts/
and

2EP U/tweadle/Tweedle/
would change

tweadledum and TWEADLEdee
into

Tweedledum and Tweedledee

leaving the character pointer just before dee.

3-33

EDIT Tripos User's Reference

3.2.5.4 Deleting Parts of the Current Line
You use the commands DTA (Delete Till After) and DTB (Delete Till
Before) to delete from the beginning of the line (or character pointer) to a
specified string. To delete from a given context until the end of the line,
you use the commands DFA (Delete From After) and DFB (Delete From
Before). If the current line were

All the King's horses and all the King's men
then the command

DTB L/King's/
would change it to

King's men
while

DTA/horses /

would change it to

and all the King's men

3.2.6 Miscellaneous Current Line Commands
This section includes some further commands that explain how to repeat

commands involving strings, how to split the current line, and how to
join lines together.

3-34

Tripos User's Reference EDIT

3.2.6.1 Repeating the Last String Alteration

Whenever EDIT executes a string alteration command (for example, A,
B, or E), it becomes the current string alteration command. To repeat the
current string alteration command, you can type a single quote (*). The '
command has no arguments. It takes its arguments from the last A, B, or
E command.

WARNING: Unexpected effects occur if you use sequences such as
E/castle/knight/; 4('; E/pawn/queen/)

The second and subsequent executions of the ' command refer to a
different command than the first. The above example would exchange
castle and knight twice and exchange pawn and queen seven times
instead of exchanging castle and knight once and then four times
exchanging castle and knight and pawn and queen.

3.2.6.2 Splitting and Joining Lines

EDIT is primarily a line editor. Most EDIT editing commands do not
operate over line boundaries, but this section describes commands for
splitting a line into more than one line and for joining together two or
more successive lines.

To split a line before a specified context, you use the SB command. The
syntax for the SB command is

SB q/s/
SB takes an optional qualifier represented here by q, and a string /s/. SB
Splits the current line Before the context you specify with the qualifier

and string. EDIT sends the first part of the line to the output and makes
the remainder into a new, non-original current line.

3-35

EDIT Tripos User's Reference

To split a line after a specified context, you use the SA command. The
syntax for SA is

SA qg/s/

SA takes an optional qualifier and a string (q and /s/). SA Splits the
current line After the context you specify with the qualifier and string.

To concatenate a line, you use the CL command. The syntax for CL is

CL/s/
CL takes an optional string that is represented here by /s/. CL or
Concatenate Line forms a new current line by concatenating the current
line, the string you specified and the next line from the source, in that
order. If the string is a null string, you may type the command CL
without specifying a string.
For an example of splitting and joining lines, look at the text

Humpty Dumpty sat on a wall; Humpty

Dumpty had a

great fall.

The old verse appears disjointed; the lines need to be balanced. If you
make the first line the current line, the commands

SA /:; /i 2CL/ /
change the line into

Humpty Dumpty sat on a wall;
leaving

Humpty Dumpty had a great fall.

as the new current line.

3-36

Tripos User's Reference EDIT

3.2.7 Ins(fecting Parts of the Source: the Type
Commands

The following commands all tell EDIT to advance through the source,
sending the lines it passes to the verification file as well as to the normal
output (where relevant). Because these commands are most frequently
used interactively (that is, with verification to the screen), they are
known as the 'type' commands. They have this name because you can use
them to 'type' out the lines you specify on the screen. This does not
however mean that you cannot use them to send output to a file. After
EDIT has executed one of these commands, the last line it '‘typed’ (that is,
displayed) becomes the new current line.

The syntax for the T (Type) command is
Tn

Tn types n lines. If you omit n, typing continues until the end of the
source. However, you can always interrupt the typing with CTRL-C.

Note: Throughout this manual when you see a hyphen between two keys,
you press them at the same time. So CTRL-C means to hold down the
CTRL key while you type C.

When you use the T command, the first line EDIT types is the current
line, so that, for example,

F /It's my own invention/; T6
types six lines starting with the one containing 'It's my own invention'.
(Note that to find the correct line, you must type the 'I' in 'It's' in upper
case.)
The command

TP
types the lines in the output queue. Thus, TP (Type Previous) is
equivalent to EDIT executing M- followed by typing until it reaches the

last line it actually read from the source.

3-37

EDIT Tripos User's Reference

The command
TN

types until EDIT has changed all the lines in the output queue. (For more
information on the output queue, see Section 3.1, Introducing EDIT) So, a
TN (Type Next) command types N lines, where N was the number
specified as the P option. (To find out more about the P option, refer to
Section 3.1.1, Calling EDIT). The advantage of the TN command is that
everything visible during the typing operation is available in memory to
P and BF commands.

The syntax for the TL (Type with Line numbers) command is as follows:

TLn

TLn types n lines as for T, but with line numbers added. Inserted and
split lines do not have line numbers, EDIT displays a '+ + + +' instead.
For example,

20 O oysters, come and walk with us
++++ and then we'll have some tea

The original line starting with 'O oysters’ has a line number. The
non-original line, inserted after line 20, starts with + + + +.
(Remember that you can use the = command to renumber non-original
lines.)

3.2.8 Control of Command, Input and Output Files

EDIT uses four types of files:

- command

- input

- output

- verification

Once you have entered EDIT, you cannot change the verification file
with a command. (To find out more about the verification file, see Section

3-38

Tripos User's Reference EDIT

3.1.1, Calling EDIT.) The following sections describe commands that can
change the command, input, and output files that you set up when you
enter EDIT.

3.2.8.1 Command Files

When you enter EDIT, it reads commands from the terminal or the file
that you specify as WITH. To read commands from ancther file, you can
use the C command. The syntax for the command is

C s.

where the string 's' represents a filename. As Tripos uses the slash
symbol (/) to separate filenames, you should use periods (.), or some other
symbol, to delimit the filename. A symbol found in a string should not be
used as a delimiter. When EDIT has finished all the commands in the file
(or you give a Q command), it closes the file and control reverts to the
command following the C command. For example, the command

C .:T/XYZ.

reads and executes commands from the file :T/XYZ

3.2.8.2 Input Files

To insert the entire contents of a file at a specific point in the source, you
use the [and R commands. These commands are described in Section
3.1.2.7 earlier in this chapter.

Section 3.1.1 described how to call EDIT. In that section, the source file
was referred to as the FROM file. However, you can also associate the
FROM file with other files, using the command FROM. The FROM
command has the following form:

FROM .s.

where the string 's' is a filename. A FROM command with no argument
re-selects the original source file.

3-39

EDIT Tripos User's Reference

When EDIT executes a FROM command, the current line remains
current; however, the next line comes from the new source.

EDIT does not close a source file when the file ceases to be current; you
can read further lines from the source file by re-selecting it later.

To close an output file that you opened in EDIT, and that subsequently
you want to open for input (or the other way round), you must use the CF
(Close File) command. The CF command has the following form:

CF s.

where the string 's' represents a filename. When you end an EDIT
session, EDIT closes automatically all the files you opened in EDIT.

Note: Any time you open a file, EDIT starts at the beginning of that file.
If you close a file with CF, EDIT starts on the first line of that file if you
re-open it, and not at the line it was on when you closed the file.

An example of the use of the FROM command to merge lines from two
files follows:

Command Action

M10 Pass lines 1-9 from the FROM (source)
file

FROM .XYZ. Select new input, line 10 remains current

M6 Pass line 10 from FROM, lines 1-5 from
XYZ

FROM Reselect FROM

M1l4 Pass line 6 from XYZ, lines 11-13 from
FROM

FROM .XYZ. Reselect XYZ

M* Pass line 14 from FROM, the rest of XYZ

FROM Reselect FROM

CF .XYZ. Close XYZ

M* Pass the rest of FROM (lines 15 till

end-of-file)

3-40

Tripos User's Reference EDIT

3.2.8.3 Output Files

EDIT usually sends output to the file with filename TO. However, EDIT
does not send the output immediately. It keeps a certain number of lines
in a queue in main memory as long as possible. These lines are previous
current lines or lines that EDIT has passed before reaching the present
current line. The number of lines that EDIT can keep depends on the
options you specified when you called EDIT. Because EDIT keeps these
lines, it has the capability for moving backwards in the source.

To associate the output queue with a file other than that with the
filename TO, you can also use the TO command. The TO command has
the form

TO .s.
where s is a filename.

When EDIT executes a TO command, it writes out the existing queue of
output lines if the output file is switched.

EDIT does not close an output file when it is no longer current. By
re-selecting the file, you can add further lines to it. The following
example shows how you can split up the source between the main
destination TO and an alternate destination XYZ.

Command Action

M1l Pass lines 1-10 to TO
TO.XYZ. Switch output file

M21 Pass lines 11-20 to XYZ
TO

M31 Pass lines 21-30 to TO
TO.XYZ.

M41 Pass lines 31-40 to XYZ
TO

If you want to re-use a file, you must explicitly close it. The command

3-41

EDIT Tripos User's Reference

CF filename.
closes the file with the filename you specify as the argument.

These input/output commands are useful when you want to move part of
the source file to a later place in the output. For example,

Command Action

TO .:T/1. Output to temporary file
1000N Advance through source
TO Revert to TO

CF .:T/1. Close output file :T.1
12000.:7/1. Re-use as input file

If you use the CF command on files you have finished with, the amount of
memory you need is minimized.

3.2.9 Loops

You can type an unsigned decimal number before many commands to
indicate repetition, for example,

24N

You can also specify repeat counts for command groups in the same way
as for individual commands, for example,

12{F/handsome/; E/handsome/hansom/; 3N)

If you give a repeat count of zero (0), the command or command group is
repeated indefinitely or until EDIT reaches the end of the source.

3-42

Tripos User's Reference EDIT

3.2.10 Global Operations

Global operations are operations that take place automatically as EDIT
scans the source in a forward direction. You can start and stop global
operations with special commands, described in the following sections.

WARNING: Be careful when you move backwards through the source
not to leave any active or ‘enabled’ globals. These enabled globals could
undo a lot of your work!

3.2.10.1 Setting Global Changes

Three commands, GA, GB, and GE are provided for simple string
changes on each line. Their syntax is as follows:

GA q/s/t/
GB q/s/t/
GE q/s/t/

These commands apply an A, B or E command, as appropriate, to any
occurrence of string 's' in a new current line. They also apply to the line

that is current at the time the command is executed.

G commands do not re-scan their replacement text; for example, the
following command

GE/Tiger Lily/Tiger Lily/

would not loop forever, but would have no visible effect on any line.
However, as a result of the ‘change’, EDIT would verify certain lines.

EDIT applies the global changes to each new current line in the order in
which you gave the commands.

3-43

EDIT Tripos User's Reference

3.2.10.2 Cancelling Global Changes

The REWIND command cancels all global operations automatically. You
can use the CG (Cancel Global) command to cancel individual commands
at any time.

When a global operation is set up by one of the commands GA, GB, or GE,
the operation is allocated an identification number which is output to the
verification file (for example, G1). The argument for CG is the number of
the global operation to be cancelled. If CG is executed with no argument,
EDIT cancels all globals.

3.2.10.3 Suspending Global Changes

You can suspend individual global operations, and later resume using
them with DG (Disable Global) and EG (Enable Global) commands.
These take the global identification number as their argument. If you

omit the argument, all globals are turned off or on (disabled or enabled),
as appropriate.

3.2.11 Displaying the Program State

Two commands beginning with SH (for SHow) output information about
the state of EDIT to the verification file.

The command SHD (SHow Data) takes the form
SHD

and displays saved information values, such as the last search
expression.

The command SHG (SHow Globals) takes the form

SHG

3-44

Tripos User's Reference EDIT

and displays the current global commands, together with their
identification numbers. [t also gives the number of times each global
search expression matches.

3.2.12 Terminating an EDIT Run

To 'wind through' the rest of the source, you use the W command
(Windup). Note that W is illegal if output is not currently directed to TO.
EDIT exits when it has reached the end of the source, closed all the files,
and relinquished the memory. Reaching the end of the highest level
command file has the same effect as W. If you call EDIT specifying only
the FROM filename, EDIT renames the temporary output file it created
with the same name as the original (that is, the FROM filename), while
it renames the original information as the file :T/EDIT-BACKUP. This
backup file is, of course, only available until the next time EDIT is run.

The STOP command stops EDIT immediately. No further input or output
is attempted. In particular, the STOP command stops EDIT from
overwriting the original source file. Typing STOP ensures that no
change is made to the input information.

The Q command stops EDIT from executing the current command file
(EDIT initially accepts commands from the keyboard, but you can specify
a command file with the WITH keyword or with the C command) and
makes it revert to the previous one. A Q at the outermost level does the
sameasa W.

3.2.13 Current Line Verification

The following circumstances can cause automatic verification to occur:

- When you type a new line of commands for a current line that
EDIT has not verified since it made the line current, or changed
since the last verification.

- When EDIT has moved past a line that it has changed, but not yet

verified.

3-45

Tripos User's Reference

Index

TAB(EM 24,217

TAB1.14,1.15

Take commands from file 3.54

Terminal support 1.70

Terminating EDIT 3.45

Terminating insertion 3.11

Text editor 2.1-19,3.1-54

Text verification 3.52

TL 3.38,3.52

TN 3.38,3.52

TO(EDIT) 3.2, 3.41, 3.53

Top of file, move t0 2.12, 2.19

TP 3.37,3.52

TR 3.47, 3.48, 3.54

TR+ 3.47,3.48

TR- 3.47,3.48

Trailing spaces 3.47, 3.54

Tripos commands, from ED 2.18

Turn character at pointer to space
3.50

Type (EDIT) 3.37, 3.38, 3.52

TYPE 1.8,1.69

U29,210,219

UC2.14.2.19

Undo changes on current line 2.9,
2.10,2.19

Unfamiliar terminology 1.1

Upper case 2.5,2.17, 3.16, 3.23,
3.30,3.50

V 3.20,3.46,3.52

V+ 3.46

V-3.46

vDU 1.70

VDU key mappings (ED) 2.17
VER(EDIT) 3.2

Verification 3.19

Verify current line 3.52

Verify (refresh) screen 2.7, 2.18
Verify with character indicators 3.52
Vertical scrolling 2.1, 2.6

W 3.12,3.45,3.54

WAIT 1.71

WB2.11,2.19

WHY 1.72

Width, console 1.14
Windup 3.12, 3.45, 3.54
WITH (EDIT) 3.2,3.39
Word, delete 2.6
Workspace 1.29

Write block to file 2.11,2.19

X28,2.19

7.3.11.3.26,3.27,3 47, 3.54

