The AmigaDOS Manual

Bantam Computer Books
Ask your bookseller for the books you have missed

THE AMIGADOS USER'S MANUAL
by Commodore-Amiga, Inc.
THE APPLE //c BOOK
by Bill O’Brien
THE COMMODORE 64 SURVIVAL MANUAL
by Winn L. Rosch
COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE
by Commodore Business Machines, Inc.
EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR APPLE II
by Tim Hartnell
EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR COMMODORE 64
by Tim Hartnell
EXPLORING THE UNIX ENVIRONMENT
by The Waite Group / Irene Pasternack
FRAMEWORK FROM THE GROUND UP
by The Waite Group / Cynthia Spoor and Robert Warren
HOW TO GET THE MOST OUT OF COMPUSERVE, 2d ed.
by Charles Bowen and David Peyton
HOW TO GET THE MOST OUT OF THE SOURCE
by Charles Bowen and David Peyton
THE MACINTOSH
by Bill O'Brien
THE NEW jr: A GUIDE TO IBM’'S PCjr
by Winn L. Rosch
ORCHESTRATING SYMPHONY
by The Waite Group / Dan Shafer
PC-DOS / MS-DOS
User’s Guide to the Most Popular Operating System for Personal Computers
by Alan M. Boyd
POWER PAINTING: COMPUTER GRAPHICS ON THE MACINTOSH
by Verne Bauman and Ronald Kidd / illustrated by Gasper Vaccaro
SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services
by Charles Bowen and Stewart Schneider
SWING WITH JAZZ:
Lotus Jazz on the Macintosh
by Datatech Publications Corp. / Michael McCarty
USER’S GUIDE TO THE AT&T PC 6300 PERSONAL COMPUTER
by David B. Peatroy, Ricardo A. Anzaldua, H. A. Wohlwend,
and Datatech Publications Corp.

The AmigaDQOS
Manual

- Commodore-Amiga, Inc.

BANTAM BOOKS
TORONTO « NEW YORK « LONDON + SYDNEY « AUCKLAND

AMIGADOS MANUAL
A Bantam Book / February 1986

Cover design by J. Caroff Associates

All rights reserved.

Copyright © 1986 by Commodore Capital, Inc.
This book may not be refroduced in whole or in part, by
mimeograph or any other means, without permission,
For information address: Bantam Books, Inc.

ISBN 0-553-34294-0
Published simultaneously in the United States and Canada

Bantam Books are published by Bantam Books, Inc. Its trademark, consisting of the
words “'Bantam Books” and the portrayal of a rooster, is Registered in U.S. Patent
and Trademark Office and in other countries. Marca Registrada. Bantam Books,
Inc., 666 Fifth Avenue, New York, New York 10103.

PRINTED IN THE UNITED STATES OF AMERICA

H 0987 654321

Contents

The AmigaDOS User’s Manual 1
The AmigaDOS Developer’s Manual 155
The AmigaDOS Technical Reference Manual 233

Preface

This book, The AmigaDOS Manual, is a combination of three separate publications:

The AmigaDOS User’'s Manual
The AmigaDOS Developer's Manual
The AmigaDOS Technical Reference Manual

The User's Manual contains information of interest to every Amiga user.
There are many more commands that AmigaDOS understands than are acces-
sible from the Workbench. If a user uses Preferences to turn on the CLI, these
new commands become accessible.

The Developer's Manual describes how to use AmigaDOS from within a
program rather than from a command line interface. It also fully documents
the Amiga Macro Assembler and Linker. (Note that the Amiga Macro Assem-
bler is available as a separate product.)

The Technical Reference Manual describes the data structures that AmigaDOS
uses internally. It includes descriptions of how DOS disk data is stored, and
the format of the “object-files” that AmigaDOS uses. A developer or expert
user would find the information in this technical section to be very useful.

Together these three publications, in this single volume, comprise the essen-
tial guide to AmigaDOS.

AmigaDQOS User’s

Introduction 2
1. Introducing AmigaDOS 4
2. AmigaDOS Commands 40
3. ED—The Screen Editor 90
4. EDIT—The Line Editor 105
Appendix: Error Codes and Messages 146

Glossary 152

Introduction

This manual describes the AmigaDOS and its commands. The Command Line
Interpreter (CLI) reads AmigaDOS commands typed into a CLI window and
translates them into actions performed by the computer. In this sense, the CLI
is similar to more “traditional” computer interfaces: you type in commands
and the interface displays text in return.

Because the Workbench interface is sufficient and friendly for most users the
Workbench diskettes are shipped with the CLI interface ““disabled”. To use the
commands in this manual you must “enable” the CLI interface. This puts a
new icon, labeled “CLI” on your Workbench. When you have selected and
opened this icon, a CLI window becomes available, and you can use it to issue
text commands directly to AmigaDOS.

How to Enable the Command Line Interface

Boot your computer using the Kickstart and Workbench diskettes. Open the
diskette icon. Open the “Preferences” tool. Near the left-hand side of the
screen, about two-thirds of the way down you will notice ““CLI” with a button
for “ON” and a button for “OFF”. Select the “ON" button. Select “Save”
(lower right part of the Preferences screen) to leave Preferences.

How to Open a CLI Window

To use the CLI commands, you open a CLI window. Open the “System”
drawer. The CLI icon (a cube containing ““1>"") should now be visible. Open
it.

Using the CLI

To use the CLI interface select the CLI window and type the desired CLI
commands. The CLI window(s) may be sized and moved just like most others.
To close the CLI window, type “ENDCLI".

INTRODUCTION 3

Workbench and CLI, Their Relationship and Differences

Type “DIR” to display a list of files (and directories) in the current disk
directory. This is a list of files that makes up your Workbench. You may notice
that there are more files in this directory than there are icons on the Work-
bench. Workbench only displays file /X"’ if that file has an associated “X.info”
file. Workbench uses the “.info” file to manipulate the icon.

For example, the diskcopy program has two files. The file “Diskcopy” con-
tains the program and “Diskcopy.info” contains the Workbench information
about it. In the case of painting data files like “mount.pic” the file “mount.pic.-
info”” contains icon information and the name of the program (default) that
should process it (GraphiCraft). In this case, when the user “opens” the data
file (mount.pic) Workbench runs the program and passes the data file name
(mount.pic) to it.

AmigaDOS subdirectories correspond to Workbench drawers. Random ac-
cess block devices such as disks (DFO0:) correspond to the diskette icons you
have seen.

Not all programs or commands can be run under both Workbench and the
CLI environment. None of the CLI commands described in Chapter 2 of this
manual can be run from Workbench. For example, there are two separate
Diskcopy commands. The one in the :¢/ directory is run from AmigaDOS (CLI).
The one in the system directory (drawer) is run from Workbench.

Chapter 1
Introducing AmigaDOS

This chapter provides a general overview of the AmigaDOS operating system,
including descriptions of terminal handling, the directory structure, and com-
mand use. At the end of the chapter, you'll find a simple example session with
AmigaDOS.

1.1 Chapter Overview /

1.2 Terminal Handling

1.3 Using the Filing System

1.3.1 Naming Files

1.3.2 Using Directories

1.3.3 Setting the Current Directory

1.3.4 Setting the Current Device

1.3.5 Attaching a Filenote

1.3.6 Understanding Device Names

1.3.7 Using Directory Conventions and Logical Devices
1.4 Using AmigaDOS Commands

1.4.1 Running Commands in the Background

1.4.2 Executing Command Files

1.4.3 Directing Command Input and Output

1.4.4 Interrupting AmigaDOS

1.4.5 Understanding Command Formats

1.5 Restart Validation Process

1.6 Commonly Used Commands: An Example Session
1.7 Conventions Used

1.1 Chapter Overview

AmigaDOS is a multi-processing operating system designed for the Amiga.
Although you can use it as a multi-user system, you normally run AmigaDOS
for a single user. The multi-processing facility lets many jobs take place simul-

INTRODUCING AMIGADOS 5

taneously. You can also use the multi-processing facility to suspend one job
while you run another.

Each AmigaDOS process represents a particular process of the operating
system—for example, the filing system. Only one process is running at a time,
while other processes are either waiting for something to happen or have been
interrupted and are waiting to be resumed. Each process has a priority associ-
ated with it, and the process with the highest priority that is free to run does
s0. Processes of lower priority run only when those of higher priority are
waiting for some reason—for example, waiting for information to arrive from
the disk.

The standard AmigaDOS system uses a number of processes that are not
available to you, for example, the process that handles the serial line. These
processes are known as private processes. Other private processes handle the
terminal and the filing system on a disk drive. If the hardware configuration
contains more than one disk drive, there is a process for each drive.

AmigaDOS provides a process that you can use, called a Command Line
Interface or CLI. There may be several CLI processes running simultaneously,
numbered from 1 onward. The CLI processes read commands and then
execute them. All commands and user programs will run under any CLI. To
make additional CLI processes, you use the NEWCLI or RUN commands. To
remove a CLI process use the ENDCLI command. (You can find a full descrip-
tion of these commands in Chapter 2 of this manual.)

1.2 Terminal Handling

You can direct information that you enter at the terminal to a Command Line
Interface (CLI) that tells AmigaDOS to load a program, or you can direct the
information to a program running under that CLI. In either case, a terminal (or
console) handler processes input and output. This terminal handler also per-
forms local line editing and certain other functions. You can type ahead as
many as 255 characters—the maximum line length.

To correct mistakes, you press the BACKSPACE key. This erases the last
character you typed. To rub out an entire line, hold down the CTRL key while
you press X. This control combination is referred to from this point on in the
manual as CTRL-X.

If you type anything, AmigaDOS waits until you have finished typing before
displaying any other output. Because AmigaDOS waits for you to finish, you
can type ahead without your input and output becoming intermixed. AmigaDOS
recognizes that you have finished a line when you press the RETURN key. You
can also tell AmigaDOS that you have finished with a line by cancelling it. To
cancel a line, you can either press CTRL-X or press BACKSPACE until all the
characters on the line have been erased. Once AmigaDOS is satisfied that you

6 AMIGADOS USER’'S MANUAL

have finished, it starts to display the output that it was holding back. If you
wish to stop the output so that you can read it, simply type any character
(pressing the space bar is the easiest), and the output stops. To restart output,
press BACKSPACE, CTRL-X, or RETURN. Pressing RETURN causes AmigaDOS
to try to execute the command line typed after the current program exits.

AmigaDOS recognizes CTRL-\ as an end-of-file indicator. In certain circum-
stances, you use this combination to terminate an input file. (For a circum-
stance when you would use CTRL-\, see Section 1.3.6.)

If you find that strange characters appear on the screen when you type
anything on the keyboard, you have probably pressed CTRL-O by mistake.
AmigaDOS recognizes this control combination as an instruction to the console
device (CON:) to display the alternative character set. To undo this condition,
you press CTRL-N. Any further characters should then appear as normal. On
the other hand, you could press ESC-C to clear the screen and display normal
text.

Note: Any input through the console device CON: ignores function keys and
cursor keys. If you want to receive these keys, you should use RAW:. (For a
description of RAW:, see Section 1.3.6, “Understanding Device Names,” later
in this chapter.)

Finally, AmigaDOS recognizes all commands and arguments typed in either
upper or lower case. AmigaDOS displays a filename with the characters in the
case used when it was created, but finds the file no matter what combination of
cases you use to specify the filename.

1.3 Using the Filing System

This section describes the AmigaDOS filing system. In particular, it explains
how to name, organize, and recall your files.

A file is the smallest named object used by AmigaDOS. The simplest identifi-
cation of a file is by its filename, discussed below in Section 1.3.1. However, it
may be necessary to identify a file more fully. Such an identification may
include the device or volume name, and/or directory name(s) as well as the
filename. These will be discussed in following sections.

1.3.1 Naming Files

AmigaDOS holds information on disks in a number of files, named so that you
can identify and recall them. The filing system allows filenames to have up to
thirty characters, where the characters may be any printing character except
slash (/) and colon (:). This means that you can include space(), equals (=),
plus (+), and double quote (“), all special characters recognized by the CLI,
within a filename. However, if you use these special characters, you must

INTRODUCING AMIGADOS 7

enclose the entire filename with double quotes. To introduce a double quote
character within a filename, you must type an asterisk (*) immediately before
that character. In addition, to introduce an asterisk, you must type another
asterisk. This means that a file named

AB = C”
should be typed as follows:
“A**B — C*n ”

in order for the CLI to accept it.

Note: This use of the asterisk is in contrast to many other operating systems
where it is used as a universal wild card. An asterisk by itself in AmigaDOS
represents the keyboard and the current window. For example,

COPY filename to *

copies the filename to the screen.
Avoid spaces before or after filenames because they may cause confusion.

1.3.2 Using Directories

The filing system also allows the use of directories as a way to group files
together into logical units. For example, you may use two different directories
to separate program source from program documentation, or to keep files
belonging to one person distinct from those belonging to another.

Each file on a disk must belong to a directory. An empty disk contains one
directory, called the root directory. If you create a file on an empty disk, then
that file belongs to this root directory. However, directories may themselves
contain further directories. Eack. directory may therefore contain files, or yet
more directories, or a mixture of both. Any filename is unique only within the
directory it belongs to, so that the file “fred” in the directory “bill” is a com-
pletely different file from the one called “fred” in the directory “mary”.

This filing structure means that two people sharing a disk do not have to
worry about accidentally overwriting files created by someone else, as long as
they always create files in their own directories.

WARNING: When you create a file with a filename that already exists,
AmigaDOS deletes the previous contents of that file. No message to that
effect appears on the screen.

8 AMIGADOS USER’S MANUAL

You can also use this directory structure to organize information on the disk,
keeping different sorts of files in different directories.

An example might help to clarify this. Consider a disk that contains two
directories, called ““bill"” and “mary.” The directory “bill” contains two files,
called “text” and “letter”. The directory “mary” contains a file called ““data”
and two directories called “letter” and “invoice”. These sub-directories each
contain a file called “jun18”. Figure 1-A represents this structure as follows:

ROOT

l I

BILL MARY

| l I |
TEXT LETTER DATA LETTER INVOICE

JUN18 JUN18

Figure 1-A: Using Directory Structure

Note: The directory “bill” has a file called “letter,” while the directory
“mary” contains a directory called “letter”. However, there is no confusion
here because both files are in different directories. There is no limit to the
depth that you can “nest” directories.

To specify a file fully, you must include the directory that owns it, the
directory owning that directory, and so on. To specify a file, you give the
names of all the directories on the path to the desired file. To separate each
directory name from the next directory or filename, you type a following slash
(/). Thus, the full specification of the data files on the disk shown in Figure 1-A
above is as follows:

bill/text

bill/letter
mary/data
mary/letter/junl8
mary/invoice/junl8

1.3.3 Setting the Current Directory

A full file description can get extremely cumbersome to type, so the filing
system maintains the idea of a current directory. The filing system searches for
files in this current directory. To specify the current directory, you use the CD
(Current Directory) command. If you have set “mary” as your current directory,
then the following names would be sufficient to specify the files in that directory:

INTRODUCING AMIGADOS 9

data
letter/junl8
invoice/junl8

You can set any directory as the current directory. To specify any files within
that directory, simply type the name of the file. To specify files within sub-
directories, you need to type the names of the directories on the path from the
current directory specified.

All the files on the disk are still available even though you've set up a current
directory. To instruct AmigaDOS to search through the directories from the
root directory, you type a colon (:) at the beginning of the file descrlptlon
Thus, when your file description has the current dlrectory set to “mary”’, you
can also obtain the file ““data” by typing the description “:mary/data”. Using the
current directory method simply saves typing, because all you have to do is
specify the filename ““data”.

To obtain the other files on the disk, first type ““:bill/text” and “:bill/letter”
respectively. Another way might be to CD or type / before a filename. Slash
does not mean “root” as in some systems, but refers to the directory above the
current directory. AmigaDOS allows multlple slashes. Each slash refers to the
level above. So a Unix (TM) ../ is a / in AmigaDOS. Slmllarly, an MS-DOS™

.\is a/in AmigaDOS. Thus, if the current directory is “:mary/letter”, you may
specify the file “:mary/invoice/jun18” as “/invoice/jun18”. To refer to the files
in “:bill”, you could type:

CD :bill
or
CD //pill

Then you could specify any file in “bill” with a single filename. Of course, you
could always use the // feature to refer directly to a specific file. For example,

TYPE //bill/letter

displays the file without your first setting “’bill"” as the current directory. To go
straight to the root level, always type a colon (:) followed by a directory name. If
you use slashes, you must know the exact number of levels back desired.

1.3.4 Setting the Current Device

Finally, you may have many disk drives available. Each disk device has a
name, in the form DFn (for example, DF1), where the “n’ refers to the number
of the device. (Currently, AmigaDOS accepts the dev1ce names DFQ to DF3.)

10 AMIGADOS USER'S MANUAL

Each individual disk is also associated with a unique name, known as a volume
name (see below for more details).

In addition, the logical device SYS: is assigned to the disk you started the
system up from. You can use this name in place of a disk device name (like
DEFQ:).

The current directory is also associated with a current drive, the drive where
you may find the directory. As you know, prefacing a file description with a
colon serves to identify the root directory of the current drive. However, to
give the root directory of a specific drive, you precede the colon with the drive
name. Thus, you have yet another way of specifying the file ““data” in directory
“mary”, that is “DF1l:mary/data”. This assumes that you have inserted the disk
into drive DF1. So, to reference a file on the drive DFO called “project-report” in
directory “peter”’, you would type “DFO0:peter/project-report”, no matter which
directory you had set as the current one.

Note: When you refer to a disk drive or any other device, on its own or with
a directory name, you should always type the colon, for example, DF1..

Figure 1-B illustrates the structure of a file description. Figure 1-C gives some
examples of valid file descriptions.

Left of the: Right of the: Right of a/

Device name Directory name Subdirectory name
or or or

Volume name Filename Filename

Figure 1-B: The Structure of a File Description

SYS:commands

DFO:bill

DF1l:mary/letter
DFR:mary/letter/funl8
DOC:report/sectionl/figures
FONTS:silly-font

C:.cls

Figure 1-C: Examples of File Descriptions

To gain access to a file on a particular disk, you can type its unique name,
which is known as the disk’s volume name, instead of the device name. For
instance, if the file is on the disk “MCC”, you can specify the same file by
typing the name “MCC:peter/project-report”. You can use the volume name to
refer to a disk regardless of the drive it is in. You assign a volume name to a
disk when you format it (for further details, see “FORMAT” in Chapter 2,
“Commands,”” later in this manual).

INTRODUCING AMIGADOS 11

A device name, unlike a volume name, is not really part of the name. For
example, AmigaDOS can read a file you created on DF0: from another drive,
such as DF1;, if you place the disk in that drive, assuming of course that the
drives are interchangeable. That is, if you create a file called “'bill” on a disk in
drive DFO:, the file is known as “DFQ:bill”’. If you then move the disk to drive
DF1:, AmigaDOS can still read the file, which is then known as “DF1:bill”.

1.3.5 Attaching a Filenote

Although a filename can give some information about its contents, it is often
necessary to look in the file itself to find out more. AmigaDOS provides a
simple solution to this problem. You can use the command called FILENOTE
to attach an associated comment. You can make up a comment of up to 80
characters (you must enclose comments containing spaces in double quotes).
Anything can be put in a file comment: the day of the file’s creation, whether
or not a bug has been fixed, the version number of a program, and anything
else that may help to identify it.

You must associate a comment with a particular file—not all files have them.
To attach comments, you use the FILENOTE command. If you create a new
file, it will not have a comment. Even if the new file is a copy of a file that has a
comment, the comment is not copied to the new file. However, any comment
attached to a file which is overwritten is retained. To write a program to copy a
file and its comment, you'll have to do some extra work to copy the comment.
For details, see Chapter 2 of the AmigaDOS Developer's Manual.

When you rename a file, the comment associated with it doesn’t change. The
RENAME command only changes the name of a file. The file’s contents and
comment remain the same regardless of the name change. For more details,
see LIST and FILENOTE in Chapter 2 of this manual.

1.3.6 Understanding Device Names

Devices have names so that you can refer to them by name. Disk names such
as DF0: are examples of device names. Note that you may refer to device
names, like filenames, using either upper or lower case. For disks, you follow
the device name by a filename because AmigaDOS supports files on these
devices. Furthermore, the filename can include directories because AmigaDOS
also supports directories.

You can also create files in memory with the device called RAM:. RAM:
implements a filing system in memory that supports any of the normal filing
system commands.

Note: RAM: requires the library 1/ram-handler to be on the disk.

Once the device RAM: exists, you can, for instance, create a directory to
copy all the commands into memory. To do this, type the following commands:

12 AMIGADOS USER’S MANUAL

MAKEDIR ram:c
COPY sys:c TO ram:c
ASSIGN C: RAM:C

You could then look at the output with DIR RAM:. It would include the
directory “c”’ (DIR lists this as c(dir).) This would make loading commands very
quick but would leave little room in memory for anything else. Any files in the
RAM: device are lost when you reset the machine.

AmigaDOS also provides a number of other devices that you can use instead
of a reference to a disk file. The following paragraphs describe these devices
including NIL:, SER:, PAR:, PRT:, CON:, and RAW:. In particular, the device
NIL: is.a dummy device. AmigaDOS simply throws away output written to
NIL:. While reading from NIL:, AmigaDOS gives an immediate “‘end-of-file”’
indication. For example, you would type the following

EDIT abc TO nil:

to use the editor to browse through a file, while AmigaDOS throws away the
edited output.

You use the device called SER: to refer to any device connected to the serial
line (often a printer). Thus, you would type the following command sequence:

COPY xyz TO ser:

to instruct AmigaDOS to send the contents of the file “xyz”” down the serial line.
Note that the serial device only copies in multiples of 400 bytes at a time.
Copying with SER: can therefore appear granular.

The device PAR: refers to the parallel port in the same way.

AmigaDOS also provides the device PRT: (for PRinTer). PRT: is the printer
you chose in the “preferences” program. In this program, you can define your
printer to be connected through either the serial or parallel port. Thus, the
command sequence

COPY xyz TO PRT:

prints the file “xyz,” no matter how the printer is connected.

PRT: translates every linefeed character in a file to carriage return plus
linefeed. Some printers, however, require files without translation. To send a
file with the linefeeds as just linefeeds, you use PRT:RAW instead of PRT:.

AmigaDOS supports multiple windows. To make a new window, you can
specify the device CON:. The format for CON: is as follows:

CON:x/y/width/height/[title]

INTRODUCING AMIGADOS 13

where “x” and “y” are coordinates, “width” and “height” are integers describ-
ing the width and height of the new window, and “title”’, which is optional, is
a string. The title appears on the window’s title bar. You must include all the
slashes (/), including the last one. Your title can include up to thirty characters
(including spaces). If the title has spaces, you must enclose the whole descrip-
tion it double quotes (") as shown in the following example:

“CON:20/10/300/100/my window”

There is another window device called RAW:, but it is of little use to the
general user. (See Chapter 2 of the AmigaDOS Developer's Manual in this book
for further details.) You can use RAW: to create a raw window device similar to
CON:. However, unlike CON:, RAW: does no character translation and does
not allow you to change the contents of a line. That is to say, RAW: accepts
input and returns output in exactly the same form that it was originally typed.
This means characters are sent to a program immediately without letting you
erase anything with the BACKSPACE key. You usually use RAW: from a
program where you might want to do input and output without character
translation.

WARNING: RAW: is intended for the advanced user. Do not use RAW:
experimentally.

There is one special name, which is * (asterisk). You use this to refer to the
current window, both for input or for output. You can use the COPY com-
mand to copy from one file to another. Using ¥, you can copy from the current
window to another window, for example,

COPY * TO CON:20/20/350/150/
from the current window to the current window, for example,
COPY * TO *
or from a file to the current window, for example,
COPY bill/letter TO *
AmigaDOS finishes copying when it comes to the end of the file. To tell

AmigaDOS to stop copying from *, you must give the CTRL-\ combination.
Note that * is NOT the universal wild card.

14 AMIGADOS USER’'S MANUAL

1.3.7 Using Directory Conventions and Logical Devices

In addition to the aforementioned physical devices, AmigaDOS supports a
variety of useful logical devices. AmigaDOS uses these devices to find the files
that your programs require from time to time. (So that your programs can refer
to a standard device name regardless of where the file actually is.) All of these
“logical devices” may be reassigned by you to reference any directory.

The logical devices described in this section are as follows:

Name Description Directory

5YS: System disk root directory :

C: Commands directory :C

L: Library directory L

s: Sequence Library 5

LIBS: Library for Open Library calls :LIBS

DEVS: Device for Open Device calls :DEVS

FONTS: Loadable fonts for Open Fonts :FONTS
Temporary workspace T

Figure 1-D: Logical Devices

Logical device name: SYS:

Typical directory name: My.Boot.Disk:

“SYS” represents the SYStem disk root directory. When you first start up
the Amiga system, AmigaDOS assigns SYS: to the root directory name
of the disk in DFQ:. If, for instance, the disk in drive DF0: has the volume
name My.Boot.Disk, then AmigaDOS assigns SYS: to My.Boot.DISK:. After
this assignment, any programs that refer to SYS: use that disk’s root directory.

Logical device name: C:

Typical directory name: My.Boot.Disk:c

‘C’ represents the Commands directory. When you type a command to the CLI
(DIR <cr>, for example), AmigaDOS first searches for that command in your
current directory. If the system cannot find the command in the current
directory, it then looks for “C:DIR”. So that, if you have assigned “C:” to
another directory (for example, “Boot__disk:c”’), AmigaDOS reads and exe-
cutes from “Boot__disk:¢/DIR”,

Logical device name: L:

Typical directory name: My.Boot.Disk:1

“L"” represents the Library directory. This directory keeps the overlays for large
commands and nonresident parts of the operating system. For instance, the
disk based run-time libraries (Ram-Handler, Port-Handler, Disk-Validator, and
so forth) are kept here. AmigaDOS requires this directory to operate.

INTRODUCING AMIGADOS 15

Logical device name: S:

Typical directory name: My.Boot.Disk:s

S’ represents the Sequence library. Sequence files contain command sequences
that the EXECUTE command searches for and uses. EXECUTE first looks for
the sequence (or batch) file in your current directory. If EXECUTE cannot find
it there, it looks in the directory that you have assigned S: to.

Logical device name: LIBS:

Typical directory name: My.Boot.Disk:LIBS

Open Library function calls look here for the library if it is not already loaded
in memory.

Logical device name: DEVS:
Typical directory name: My.Boot.Disk:DEVS
Open Device calls look here for the device if it is not already loaded in memory.

Logical device name: FONTS:

Typical directory name: My.Boot. Disk:FONTS

Open Fonts look here for your loadable fonts if they are not already loaded in
memory.

Note: In addition to the above assignable directories, many programs open files
in the “:T” directory. As you recall, you find file (or directory) names predicated
with a “”” in the root directory. Therefore “:T” is the directory T, within the root,
on the current disk. You use this directory to store temporary files. Programs
such as editors place their temporary work files, or backup copies of the last
file edited, in this directory. If you run out of space on a disk, this is one of the
first places you should look for files that are no longer needed.

When the system is first booted, AmigaDOS initially assigns C: to the :C
directory. This means that if you boot with a disk that you had formatted by
issuing the command: ’

FORMAT DRIVE DFO: NAME “My.Boot.Disk”

SYS: is assigned to “My.Boot.Disk”. The “logical device” C: is assigned to the
C directory on the same disk (that is, My.Boot.Disk:c). Likewise, the followmg
assignments are made

C: My.Boot.Disk:c

L: My.Boot.Disk:1

S: My.Boot.Disk:s
LIBS: My.Boot.Disk:libs
DEVS: My .Boot.Digk:devs

FONTS: My.Boot.Disk:fonts

16 AMIGADOS USER’'S MANUAL

If a directory is not present, the corresponding logical device is assigned to
the root directory.

If you are so lucky as to have a hard disk (called DHO:) and you want to use
the system files on it, you must issue the following commands to the system:

ASSIGN 8Y8: DHO:
ASSIGN C: DHO:C
ASSIGN L: DHO:L
ASSIGN 8: DHO:S
ASSIGN LIBS: DHO:LIBS
ASSIGN DEVS: DHO:DEVS
ASSIGN FONTS: DHO:FONTS

Please keep in mind that assignments are global to all CLI processes. Chang-
ing an assignment within one window changes it for all windows.
If you want to use your own special font library, type

ASSIGN FONTS: “Special font disk:myfonts”

If you want your commands to load faster (and you have memory “to burn”),

type

makedir ram:c
COpYy sys:c ram:c all
assign ¢: ram:c

This copies all of the normal AmigaDOS commands to the RAM disk and
reassigns the commands directory so that the system finds them there.

1.4 Using AmigaDOS Commands

An AmigaDOS command consists of the command name and its arguments, if
any. To execute an AmigaDOS command, you type the command name and its
arguments after the CLI prompt.

When you type a command name, the command runs as part of the Com-
mand Line Interface (CLI). You can type other command names ahead, but
AmigaDOS does not execute them until the current command has finished.
When a command has finished, the current CLI prompt appears. In this case,
the command is running interactively.

The CLI prompt is initially n>, where n is the number of the CLI process.
However, it can be changed to something else with the PROMPT command.
(For further details on the PROMPT command, see Chapter 2 of this manual.)

INTRODUCING AMIGADOS 17

WARNING: If you run a command interactively and it fails, AmigaDOS
continues to execute the next command you typed anyway. Therefore, it
can be dangerous to type many commands ahead. For example, if you

type

COPY aTOD
DELETE a

and the COPY command fails (perhaps because the disk s full), then DELETE
executes and you lose your file.

1.4.1 Running Commands in the Background

You can instruct AmigaDOS to run a command, or commands, in the back-
ground. To do this, you use the RUN command. This creates a new CLI as a
separate process of lower priority. In this case, AmigaDOS executes subse-
quent command lines at the same time as those that have been RUN. For
example, you can examine the contents of your directory at the same time as
sending a copy of your text file to the printer. To do this, type

RUN TYPE text_ file to PRT:
LIST

RUN creates a new CLI and carries out your printing while you list your
directory files on your original CLI window.

You can ask AmigaDOS to carry out several commands using RUN. RUN
takes each command and carries it out in the given order. The line containing
commands after RUN is called a command line. To terminate the command
line, press RETURN. To extend your command line over several lines, type a
plus sign (+) before pressing RETURN on every line except the last. For
example,

RUN JOIN text_ filel text_ fileR AS text_ file +
SORT text__file TO sorted __text +
TYPE sorted__text to PRT:

1.4.2 Executing Command Files

You can also use the EXECUTE command to execute command lines in a file
instead of typing them in directly. The CLI reads the sequence of commands
from the file until it finds an error or the end of the file. If it finds an error,

18 AMIGADOS USER'S MANUAL

AmigaDOS does not execute subsequent commands on the RUN line or in the
file used by EXECUTE, unless you have used the FAILAT command. See
Chapter 2 of this manual for details on the FAILAT command. The CLI only
gives prompts after executing commands that have run interactively.

1.4.3 Directing Command Input and Output

AmigaDOS provides a way for you to redirect standard input and output. You
use the > and < symbols as commands. When you type a command, AmigaDOS
usually displays the output from that command on the screen. To tell AmigaDOS
to send the output to a file, you can use the > command. To tell AmigaDOS to
accept the input to a program from a specified file rather than from the
keyboard, you use the < command. The < and > commands act like traffic
cops who direct the flow of information. For example, to direct the output from
the DATE command and write it to the file named “text__file”, you would type
the following command line:

DATE > text__file

See Chapter 2 of the User’s Manual for a full specification of the < and >
symbols.

1.4.4 Interrupting AmigaDOS

AmigaDOS allows you to indicate four levels of attention interrupt with CTRL-C,
CTRL-D, CTRL-E, and CTRL-F. To stop the current command from whatever it
was doing, press CTRL-C. In some cases, such as EDIT, pressing CTRL-C
instructs the command to stop what it was doing and then to return to reading
more EDIT commands. To tell the CLI to stop a command sequence initiated by
the EXECUTE command as soon as the current command being executed
finishes, press CTRL-D. CTRL-E and CTRL-F are only used by certain com-
mands in special cases. See the Developer’s Manual in this book for details.

Note: It is the programmer’s responsibility to detect and respond to these
interruption flags. AmigaDOS will not kill a program by itself.

1.4.5 Understanding Command Formats

This section explains the standard format or argument template used by most
AmigaDOS commands to specify their arguments. Chapter 2 of this manual
includes this argument template in the documentation of each of the com-
mands. The template provides you with a great deal of flexibility in the order
and form of the syntax of your commands.

The argument template specifies a list of keywords that you may use as

INTRODUCING AMIGADOS 19

synonyms, so that you type the alternatives after the keyword, and separate
themn with an =
For example,

ABCWWW XYZ =227

specifies keywords, ABC, WWW, and XYZ. The user may use keyword ZZZ as
an alternative to the keyword XYZ.

These keywords specify the number and form of the arguments that the
program expects. The arguments may be optional or required. If you give the
arguments, you may specify them in one of two ways:

By position In this case, you provide the arguments in the same order as the
keyword list indicates.

By keyword In this case, the order does not matter, and you precede each
argument with the relevant keyword.

For example, if the command MYCOMMAND read from one file and wrote to
another, the argument template would be:

FROM,TO

You could use the command specifying the arguments by position:
MYCOMMAND input-file output-file

or using the keywords:

MYCOMMAND FROM input-file TO output-file
MYCOMMAND TO output-file FROM input-file

You could also combine the positional and keyword argument specifications,
for example, with the following:

MYCOMMAND input-file TO output-file

where you give the FROM argument by position, and the TO argument by
keyword. Note that the following form is incorrect:

MYCOMMAND output-file FROM input-file

because the command assumes that ‘output-file’ is the first positional argument
(that is, the FROM file).

20 AMIGADOS USER’S MANUAL

If the argument is not a single word (that is, surrounded or “delimited” by
spaces), then you must enclose it with quotation marks (). If the argument has
the same value as one of the keywords, you must also enclose it with quotation
marks. For example, the following:

MYCOMMAND “file name” TO “destination”

supplies the text “file name” as the FROM argument, and the file name
“destination” as the TO argument.

The keywords in these argument lists have certain qualifiers associated with
them. These qualifiers are represented by a slash (/) and a specific letter. The
meanings of the qualifiers are as follows:

/A The argument is required and may not be omitted.

/K The argument must be given with the keyword and may not be used
positionally.

/S The keyword is a switch (that is, a toggle) and takes no argument.

The qualifiers A and K may be combined, so that the template
DRIVE/A/K

means that you must give the argument and keyword DRIVE.

In some cases, no keywords may be given. For example, the command
DELETE simply takes a number of files for AmigaDOS to delete. In this case,
you simply omit the keyword value, but the commas normally used to separate
the keywords remain in the template. Thus, the template for DELETE, that can
take up to ten filenames, is

[EEREEERE]

Finally, consider the command TYPE. The argument template is
FROM/A,TO,OPT/K

which means that you may give the first argument by position or by keyword,
but that first argument is required. The second argument (TO) is optional, and
you may omit the keyword. The OPT argument is optional, but if it is given,
you must provide the keyword. So, the following are all valid forms of the
TYPE command:

INTRODUCING AMIGADOS 21

TYPE filename

TYPE FROM filename

TYPE filename TO output-file

TYPE filename output-file

TYPE TO output-file FROM filename OPT n
TYPE filename OPT n

TYPE filename OPT n TO output-file

Although this manual lists all the arguments expected by the commands, you
can display the argument template by simply typing the name of the com-
mand, followed by a space and a question mark (?).

If the arguments you specify do not match the template, most commands
simply display the message “Bad args” or “Bad arguments”” and stop. You must
retype the command name and argument. To display on the screen help on
what arguments the command expected, you can always type a question mark

().

1.5 Restart Validation Process

When you first insert a disk for updating, AmigaDOS creates a process at low
priority. This validates the entire structure on the disk. Until the restart process
has completed this job, you cannot create files on the disk. It is possible,
however, to read files.

When the restart process completes, AmigaDOS checks to see if you have set
the system date and time. To set the date and time, you use the DATE
command. If you do not specify the system date, AmigaDOS sets the system
date to the date and time of the most recently created file on the inserted disk.
This ensures that newer versions of files have more recent dates, even though
the actual time and date will be incorrect.

If you ask for the date and the time before the validation is complete,
AmigaDOS displays the date and time as unset. You can then either wait for
the validation to complete or use DATE to enter the correct date and time.
Validation should happen at once; otherwise, it should never take longer than
one minute.

1.6 Commonly Used Commands: An Example Session

This manual describes the various AmigaDOS commands. The Command Line
Interpreter (CLI) reads AmigaDOS commands typed into a CLI window and
translates them into actions performed by the computer. In this sense the CLI

22 AMIGADOS USER'S MANUAL

is similar to more “traditional” computer interfaces: you type in commands
and the interface displays text in return.

Because the Workbench interface is sufficient and friendly for most users,
the Workbench diskettes are shipped with the CLI interface “disabled”. To use
the commands in this manual you must “enable” the CLI interface. This puts a
new icon, labeled “CLI” on your Workbench. When you have selected and
opened this icon, a CLI window becomes available, and you can use it to issue
text commands directly to AmigaDOS.

How to Enable the Command Line Interface

Boot your computer using the Kickstart diskette and a writable copy of your
Workbench diskette. Open the Workbench diskette icon. Open the “Prefer-
ences”’ tool. Near the left-hand side of the screen, about two-thirds of the way
down you will notice “CLI"” with a button for “ON” and a button “OFF".
Select the “ON” button. Select “Save” (lower right part of the Preferences
screen) to leave Preferences.

How to Make a New CLI Window

To use the CLI commands, you open a CLI window. Open the “System”
drawer. The CLI icon (a cube containing “1>") should now be visible. Open it.

Using the CLI

To use the CLI interface, select the CLI window and type the desired CLI
commands (described within this manual). The CLI window(s) may be sized
and moved just like many others. To close the CLI window, type “ENDCLI".

Workbench and CLI: Their Relationships and Differences

Type “DIR” to display a list of files (and directories) in the current disk
directory. This is a list of files that makes up your Workbench. You may notice
that there are many more files in this directory than there are icons on the
Workbench. The reason for this is that Workbench will only display file /X" if it
has an associated “X.info”" file. In fact the “.info” (pronounced “dot info”) file
contains all of the icon display information.

For example, the diskcopy program has two files associated with it. The
file “Diskcopy”” contains the program and “Diskcopy.info”” contains the Work-
bench information about it. In the case of painting data files like “mount.pic”,
the file “mount.pic.info” contains icon information and the name of the pro-
gram (default) that should process it (GraphiCraft). In this case, when the

INTRODUCING AMIGADOS 23

user “opens” the data file (mount.pic.info), Workbench runs the program and
passes the data file name (mount.pic) to it.

AmigaDOS sub-directories correspond to Workbench drawers. Random ac-
cess block devices such as disks (DF0:) correspond to the diskette icons you
have seen.

Not all programs or commands can be run under both Workbench and the
CLI environment. None of the CLI commands described in Chapter 2 of the
AmigaDOS User's Manual can be run from Workbench. For example, there are
two separate Diskcopy commands. The one in the :¢/ directory works with
AmigaDOS (CLI). The one in the system directory (drawer) works with
Workbench.

An Introduction to Some of the AmigaDOS Commands

Although all of the commands that are available through the CLI are explained
in detail in the reference part of the AmigaDOS User's Manual, we have found
that most users will use very few of the advanced options. Therefore we have
provided a summary here showing various commands in their most common
form.

The commands summarized below (along with the actual AmigaDOS com-
mand name) ask AmigaDOS to do such commands as

» Copy a diskette (DISKCOPY)
» Format a new diskette (FORMAT)
* Make a formatted diskette bootable;
create a CLI disk (INSTALL)
* Relabel a diskette (RELABEL)
* Look at the directory of a diskette (DIR)
* Get information about files (LIST)
* Prevent a file from accidental deletion (PROTECT)
* Get Information about a file system (INFO)
* Change a current directory (CD)
* Set the date and time (DATE)
* Redirect the output of a command (>)
* Type a text file to the screen (TYPE)
* Rename a file (RENAME)
* Delete a file (DELETE)
* Create a new directory (MAKEDIR)
¢ Copy files on a dual-drive system (COPY)
* Copy files on a single-drive system (COPY)
* Find files on a diskette (DIR OPT A)
* Do something automatically at boot time (using Startup-Sequence)

24 AMIGADOS USER’'S MANUAL

* Tell AmigaDOS where to look for certain things (ASSIGN)
* Open a new CLI window (NEWCLI)
* Close an existing CLI window (ENDCLI)

All of the command sequences below assume that you have started your
system with a CLI disk rather than a Workbench disk, or that you have turned
on the CLI using the preferences tool and have entered the CLI by that path.
The sequence for turning on the CLI is provided earlier in this manual.

For a New User

For a new user, we suggest that you read and try each of these items in
sequence. Each command that is shown below leaves a test disk in a known
state so that the command that immediately follows will work exactly as
shown. Later, when you are more familiar with the system, the paragraph
titles shown below will serve to refresh your memory.

How to Begin

Before you begin this section, be sure you have two blank, double-sided
diskettes, and either your Workbench disk or your CLI disk. Before you begin,
write-protect your master diskette, and write-enable the blank diskettes. Most
of the commands given below assume that you have a single-drive system;
however, for convenience of those with dual-drive systems, the dual-drive
version of the command is occasionally given.

Commands that instruct AmigaDOS to execute are shown in the following
sections, indented from the left margin. After typing each command, press the
RETURN key to return control to AmigaDOS. Although the commands are all
shown in capital letters, this is simply to distinguish them from the rest of
the text. AmigaDOS will accept the commands in lower case as well as upper
case.

In the sections that follow, the notations “df0:” and “drive 0" refer to the
disk drive that is built into the Amiga. The notation ““dfl:” refers to the first
external 3'%-inch disk drive.

You will occasionally see a semicolon on a command line that you are told to
type. What follows the semicolon is treated as a comment by AmigaDOS. Since
AmigaDOS ignores the rest of the line, you don’t need to type the comment
along with the command. It is for your information only.

For most commands, you can get a very limited form of help by typing the
command name, followed by a question mark (?) and pressing RETURN. It
shows you the “template” of a command, containing the sequence of parame-
ters it expects and the keywords it recognizes.

INTRODUCING AMIGADOS 25

Copying a Disk

You can use this sequence to back up your system master disk or any other
disk.

For a 1 disk system

DISKCOPY FROM dfO: TO dfO:
For a 2 disk system

DISKCOPY FROM dfO: TO dfl:

Follow the instructions as they appear. For a single drive system, you'll be
instructed to insert the master (FROM) disk. Then, as the copying progresses,
AmigaDOS asks you to insert the copy (TO) disk, swapping master and copy
in and out until all of the diskette has been duplicated. For a two disk system,
you'll be instructed to put the master diskette into drive df0: (the built-in
drive) and the copy diskette onto which to copy into dfl: (the first external
drive).

Remove your master diskette (either Workbench or CLI disk) and put your
master diskette in a safe place. Leave the copy write-enabled so that you can
store information on it. Insert the copy you have just made into the built-in
drive and reboot your system from the copy. (See Introduction To Amiga for
the reboot process).

After the reboot, reenter the CLI mode again. If you boot with a CLI disk,
the reboot enters the CLI automatically. If you are using a Workbench disk,
you must open the CLI icon in the system drawer of the Workbench.

Formatting a Disk

To try this command, your Workbench or CLI diskette copy should be in drive
0, and you should have a blank diskette available.

Sometimes rather than simply copy a disk, you'll want to prepare a data disk
for your system. Then later you can copy selected files to this data disk. Format
your second blank disk by using the FORMAT command:

FORMAT DRIVE df0: NAME “AnyName”
Follow the instructions. You can format diskettes in either drive 0 (df0:, built in

to your Amiga) or an external drive.
After the format is completed, wait for the disk activity light to go off and

26 ~ AMIGADOS USER'S MANUAL

remove the freshly formatted diskette. Reinsert your Workbench or CLI disk-
ette. The formatted diskette can now be used to hold data files. It is not
bootable, however.

Making a Disk Bootable

To try this command, your Workbench or CLI diskette copy should be in drive
0, and you should have your freshly formatted disk available.

There are several different ways to create a CLI diskette. Two of these ways
are shown below.

A bootable disk is one that you can use to start up your Amiga following the
Kickstart process. You can change a formatted disk into a CLI disk by typing
the command:

INSTALL ?

Note: to use this command on a single drive system, you MUST use the
question mark! Otherwise AmigaDOS will try to do the install on the disk
currently in drive 0.

AmigaDOS responds:

DRIVE/A

Remove your Workbench diskette copy and insert the formatted disk. Then
type:

dfo:

and press RETURN. AmigaDOS copies boot sectors to the diskette. Now, if you
wait until the disk activity light goes out, you can then perform a full reset
(CTRL-Amiga-Amiga). When the system reboots, you will go directly into the
CLI rather than into the Workbench.

Your formatted diskette now contains a CLI and nothing else. This means that
although you see the interpreter, it can’t perform any of the commands shown
in this section. A CLI needs several files before its commands can be performed.
All of the command files are located in the C directory of your master diskette.

The second way to produce a CLI disk gives you a more useful disk in that it
leaves the CLI command directories intact. Here is a step-by-step process to
change a writable copy of a Workbench diskette into a CLI diskette:

1. Copy your Workbench diskette.
2. Open the CLI as described above.
3. Click the selection button on the CLI window and type the command:

INTRODUCING AMIGADOS 27

RENAME FROM s/startup-sequence TO s/NO-startup-sequence

Now if you wait for the disk activity light to go off and perform a full reset,
your Workbench diskette copy will have become a CLI. To restore the Work-
bench, perform the rename again, but with the name sequence reversed. You
see, if AmigaDOS can't find a file with the exact name “‘startup-sequence” in
the ’s” directory, it will enter command mode and wait for you to type a
command.

Relabeling a Disk

Before you try this command, your Workbench or CLI diskette copy should be
in drive 0.

If, after either copying or formatting a diskette, you are not satisfied with the
volume name you have given it, you can change the name of the volume by
using the RELABEL command:

relabel AnyName: DifferentName

In this example, we have referred to the diskette we just formatted by its
volume name. You will be asked to insert volume AnyName into any disk
drive so that RELABEL can relabel it.

After this command completes, remove the diskette and reinsert your
Workbench or CLI diskette. The diskette you removed now has the new name.

Looking at the Directory

Before you try this command, your Workbench or CLI diskette copy should be
in drive 0.
You look at the contents of a diskette with the command:

DIR or DIR 4f0:

This form lists the contents of your current directory. You can list the contents
of a different directory by specifying the pathname for that directory. For
example, the command:

DIR dfO:c or DIR ¢

lists the contents of the c(dir) on drive df0. Directories are equivalent to the
drawers you see when the Workbench screen is visible.

You can look at the directory of a different disk unit, if you have one, by
specifying its name. For example:

28 AMIGADOS USER'S MANUAL

DIR dfl:

lists the contents of a diskette inserted in drive 1 (the first external drive if you
have one attached).

You can even look at the directory of a diskette that isn’t currently in the
drive by specifying its volume name. For example, the contents of that freshly
formatted diskette whose name we changed can be displayed by the command:

DIR DifferentName:

AmigaDOS will ask you to insert diskette DifferentName into the drive so that
DIR can read it and report the contents of the directory. Don’t do it yet,
however, because there are no files present for DIR to read. We'll add some
files later.

Using the LIST Command

To try this command, your Workbench or CLI diskette copy should be in drive
0.

The DIR command tells you the names of files that are in your directory. The
LIST command provides additional information about those files. Type the
command:

LIST or LIST 4fO:

AmigaDOS provides information about all files in the current directory,
including how large each file is, whether it may or may not be deleted,
whether it is a file or a directory, and the date and time of its creation.

If you specify the name of a directory with LIST, it lists information about
the files within that directory:

LIST ¢

The “rwed” are called protection flags, for read, write, execute, and delete.
When each flag is set, using the PROTECT command, a file is supposed to be
readable, writable, executable, or deleteable. As of the current release, AmlgaDOS
only pays attention to the delete-flag. If the “d” doesn’t show up in the
“rwed” column for a filename, AmigaDOS won’t delete that file during a
DELETE command.

INTRODUCING AMIGADOS 29

Using the Protect Command

To try this command, your Workbench or CLI diskette copy should be in drive
0.

This command protects (or unprotects) a file from being deleted accidentally.
Try the command:

DATE > myfile
PROTECT myfile
LIST myfile

You will see that all of the protect-flags have been set to “——". Now if you
try:

DELETE myfile
AmigaDOS responds:

“Not Deleted - file is protected from deletion”
To reenable deletion of the file:

PROTECT myfile d or PROTECT myfile rwed

- Getting Information About the File System
Your Workbench or CLI diskette copy should still be in drive 0. Type the
command:

INFO

It tells you how much space is used and how much is free on your diskettes,
whether they are read-only or read-write, and the name of the volume. You
can make more space on the diskette by deleting files. You can change the
name of the volume by using the RELABEL command.

If you want to get information about a disk that isn’t in your single-drive at
the moment, issue the command as:

INFO ?
AmigaDOS responds:

nomne:

30 AMIGADOS USER'S MANUAL

AmigaDOS has loaded the INFO command from your CLI disk and shows
you the template for the command. The response “none:” says that you don’t
have to type anything other than a RETURN key to have it perform the com-
mand. Remove your CLI disk and insert the disk on which you want INFO to
operate. Wait for the disk activity light to go on and off. Then press RETURN.
AmigaDOS gives you INFO about this other disk. This works for DIR as well
as INFO.

Changing Your Current Directory

Until now, we have only stayed at the “root” or topmost hierarchical level of
the diskette directory. You will find more information about the directory tree
structure in section 1.3 of this manual. To see the level at which you are currently
positioned in your directory tree, you use the command:

CD

To change to a different current directory, you tell the system which directory
is to become the current one. For example, when you did a “dir”” command on
df0: the CLI diskette you saw an entry c(dir). If you want to make this directory
the current one, you issue the command:

CD C or CD df0:c

Now when you issue the command DIR, it shows the contents of this level
of the filing system. The command CD (alone) shows you the name of your
current directory. You go up to the root directory (the top level) by specifying:

CD:
on the current volume (if you refer to your diskettes by volume name) or

CD dfo:
on the built-in drive.
Setting the Date and Time
You can set the AmigaDOS clock by using the DATE command:

DATE 12:00:00 12-oct-85

Now the system clock counts up from this date and time.

INTRODUCING AMIGADOS 31

Redirecting the Output of a Command

Before you try this command, your Workbench or CLI diskette should be in
drive 0.

Normally the output of all commands goes to the monitor screen. You can
change where the system puts the output by using the redirect command ““>".
The forward arrow symbol means send the output toward this output file
name. Here’s an example:

DATE > datefile

Execute the command so that you can use the datefile described below. This
command creates (or overwrites) a file named “datefile” in your current directory.

Or, just to have something on that formatted diskette named DifferentName,
type the following:

DATE > DifferentName:datefile

AmigaDOS prompts you to insert the volume with that name. After the disk
activity light goes out, remove DifferentName and reinsert your CLI or Work-
bench diskette. Now issue the command:

DIR DifferentName:

Again you are prompted to insert DifferentName into any drive. AmigaDOS
lists the directory of this diskette, which now contains a file named datefile.
Replace your CLI or Workbench diskette in the drive.

Typing a Textfile to the Screen

You can see the contents of a textfile by using the TYPE command:
TYPE datefile

This command will display whatever you have in the specified file. If you
wish to stop the output momentarily to read something on the screen, press
the space bar. To restart it press the BACKSP key. If you wish to end the TYPE
command, hold down the CTRL key, and press the C key.

If you wish to verify that another diskette also has the datefile contents on it,
you can perform the command:

TYPE DifferentName:datefile

32 AMIGADOS USER'S MANUAL

Changing the Name of a File

Before you try this command, your Workbench or CLI diskette copy should be
in drive 0.
You can change the name of a file by using the RENAME command:

RENAME FROM datefile TO newnaime
or
RENAME datefile newname
Now use TYPE to verify that the new name refers to the same contents.
TYPE newname

Notice that the alternate form of the command doesn’t require that you use
the FROM and TO. Most of the AmigaDOS commands have an alternate form,
abbreviated from that shown in this preface section. The longer form has been
used primarily to introduce you to what the command does. Be sure to
examine the summary pages to familiarize yourself with the alternate com-
mand forms that are available.

Deleting Files

To try this command, your Workbench or CLI diskette should be in drive 0.

You may be working on several versions of a program or textfile, and
eventually wish to delete versions of that file that you don’t need anymore.
The DELETE command lets you erase files and releases the disk space to
AmigaDOS for reuse.

Note: If you DELETE files, it is not possible to retrieve them. Be certain that
you really do wish to delete them.

Here is a sample command sequence, that creates a file using the redirection
command, types it to verify that it is really there, then deletes it.

DIR > directorystuff
TYPE directorystuff
DELETE directorystuff
TYPE directorystuff

To the final command in the above sequence, AmigaDOS responds:
Can’t Open directorystuff

indicating that the file can’t be found, because you deleted it.

INTRODUCING AMIGADOS 33

Copying Files

Before you enter this command, your Workbench or CLI diskette should be in
drive 0.
On a dual-drive system, copying files is easy:

COPY FROM dfO:sourcepath TO dfl:destinationpath
or
COPY dfO:sourcepath dfl:destinationpath

On a single-drive system, copying files is a little more complex. You must
copy certain system files from your system diskette into the system memory.
This is also called using the RAM: device, often known as a ramdisk. Copy the
file(s) to the ramdisk, change your directory to the ramdisk, then copy from the
ramdisk onto the destination diskette. Here is a sample sequence.

Be sure your Workbench or CLI diskette is in the internal disk drive. Issue
the commands:

COPY df0:c/cd RAM:
COPY dfO:c/copy RAM:
CD RAM:

Insert the source data diskette into the drive. (For this example, copy some-
thing from the Workbench or CLI diskette, which is already in the drive).

Type:

COPY dfO:c/execute ram:execute
or

COPY dfO:.c/execute execute
or

COPY afO:c/execute ram:

Remove the source diskette, and insert the destination diskette into the
drive. Type:

COPY ram:execute df0:execute
or
COPY execute dfO:execute (If you did the CD RAM: this form works.)

Remove the destination diskette and insert your CLI or Workbench diskette
again. Type:

34 AMIGADOS USER’S MANUAL

CD 4fo:

and you are back where you started. The only other command you may want
to perform is:

DELETE RAM:cd RAM:copy RAM:execute
which releases the ramdisk memory to the system for other uses.

Creating a New Directory

You can create a new directory (newdrawer) within the current directory by
using the MAKEDIR command:

MAXEDIR newdrawer
Now if you issue the DIR command, you will see that there is an entry for:
newdrawer (dir)

You can also use the RENAME command to move a file from one directory
(drawer) to another on the same diskette:

MAKEDIR newdrawer
RENAME FROM newname TO newdrawer/newname

moves the file from the current directory into the newdrawer you have created.
To check that it has really been moved, issue the command:

DIR
Then type:
DIR newdrawer

AmigaDOS looks in the newdrawer, and shows you that the file named
“newname”’ is there.

Is My File Somewhere on This Disk?

Before you enter this command, your Workbench or CLI diskette copy should
be in drive 0.
Sometimes you wish to see everything on the diskette, instead of only

INTRODUCING AMIGADOS 35

one directory at a time. You can use the DIR command with one of its
options:

DIR OPT A

which lists all directories and subdirectories on the diskette. Keep in mind the
<space><BACKSP> combination to pause and restart the listing.

To get a closer look at the disk’s contents, you might redirect the output to a
file:

DIR > mydiskdir OPT A

Notice that the redirect-the-output command character and filename MUST
come before the list of options for the DIR command.

Now, if you wish, you can TYPE the file mydiskdir and press the space bar
to pause the listing. Use the RETURN key to resume the listing. Or, you can
use ED to view the file, as follows:

ED mydiskdir

Use the cursor keys to move up and down in the file.

Use the key combination ESC then T <RETURN> to move to the top of
the file.

Such a combination can be referred to as “ESC-T”, meaning ESC followed
by T.

Use the key combination ESC-B <RETURN> to move to the bottom of the
file.

Use the key combination ESC-M then a number <RETURN> to move to
a specific line number within the file.

Use the key combination ESC-Q <RETURN> to QUIT without changing
the file or

Use ESC-X <RETURN> to write any changes to your file back into the
original file name.

Chapter 3 of the AmigaDOS User’s Manual has more detailed information on
using ED.

Doing Something Automatically at Boot Time

There is a file in the “’s” subdirectory on your Workbench or CLI diskette called
Startup Sequence. This is an execute file. It contains a sequence of CLI com-
mands that AmigaDOS performs whenever you reboot the system. The last
two commands in your Workbench diskette Startup Sequence are LoadWb

36 AMIGADOS USER'S MANUAL

(load the Workbench program) and ENDCLI which basically leaves the Work-
bench program in control. You can make up your own Startup Sequence file
using ED or EDIT to create a custom version of an execute command
sequence. The EXECUTE command summary and tutorial section in the
AmigaDOS User's Manual has details about various commands that you can
have in this file. Note that Startup Sequence can also be used to auto-run a
program.

WARNING: Take care to modify only a copy of your diskette
never modify the master diskette if you decide to change the
Startup Sequence.

Assigning the Diskette on Which AmigaDOS Looks for Things

Before you enter this command, your Workbench or CLI diskette copy should
be in drive 0.

Occasionally, you might wish to change to a different diskette and then
continue your work. For example, you may have booted the system using a
Workbench diskette, then wish to change to a CLI diskette. If the CLI diskette
has a directory on it that contains the executable commands you want to
perform, (for example, a c(dir)), you can change to that diskette by using the
ASSIGN command.

If you don’t use ASSIGN, you will have to swap diskettes to get commands
done. Here is an example that doesn’t use ASSIGN. The intent is to change
diskettes and begin using “mydisk:”" as the main diskette. Any unneeded files
have already been deleted so as to provide workspace.

CD mydisk:
AmigaDOS responds “insert mydisk into any drive”. Insert it, then type:

DIR

AmigaDOS prompts “insert Workbench [or whatever the boot diskette name
was] in any drive”. It knows, from boot time, that the DIR command is in the
boot diskette, ¢ directory. AmigaDOS reads the DIR command, then asks
“insert mydisk in any drive”. Any other AmigaDOS command also results in
the need for a diskette swap. To avoid this, use the ASSIGN command as
follows:

ASSIGN c: mydisk:c

INTRODUCING AMIGADOS 37

AmigaDOS asks “insert mydisk into any drive”. From now on, all com-
mands to AmigaDOS will be sought from the command (c) directory of this
other diskette and AmigaDOS won’t ask for the original diskette back for
simple commands.

Once you've done this, you'll probably want to type:

CD mydisk:
There are other things that AmigaDOS can assign. If you issue the command

ASSIGN LIST

you will see the other things as well. If you run a program that requires a serial
device (modem, printer) or a parallel device (printer), AmigaDOS looks in the
directory currently assigned to DEVS: to locate the device. If all of the system
directories are on this new main diskette, you can avoid having AmigaDOS ask
you to reinsert the original diskette by providing an execute file on your
diskettes that reassigns all devices to that diskette. The contents of this execute
file for a diskette named “mydisk” are as follows:

ASSIGN SYS: mydisk:
ASSIGN 8: mydisk:s

ASSIGN DEVS: mydisk:devs
ASSIGN L: mydisk:1

ASSIGN FONTS: mydisk:fonts
ASSIGN LIBS: mydisk:libs

To create this execute file, use the command:
COPY FROM * TO reassign

Then type the above ASSIGN lines. After you've typed the last line, enter
the key combination CTRL-\ which ends the file. The “*’ stands for the
keyboard and current CLI window, so this method of creating a file is one
possible alternative to using ED or EDIT.

Creating a New CLI

AmigaDOS is a multi-tasking system. You can have multiple windows open at
the same time, each with its own current directory and executing separate
commands. You create a new CLI by using the command NEWCLI:

NEWCLI

38 AMIGADOS USER'S MANUAL

This opens a separate window, with a prompt that identifies the current
process. For example, if the first window has a prompt:

1>
then the new CLI might have a prompt:
2>

You can move the new window around, make it bigger, make it smaller and
so on. To issue commands to the new CLI, click within its window. Now
anything you type goes into the window where you clicked the selection
button most recently. Try the following:

1. Click in window 1, then type:

DIR dfO:c
2. Quickly click in window 2, and type:

INFO

Both CLIs will work at the same time to fulfill your requests. This demon-
strates the multi-tasking capabilities of the Amiga. Notice that you aren’t

limited to only two CLIs, you can, if there is memory available, open as many
as 20 CLlIs.

Closing a CLI

You finish with a CLI and close its window with the command ENDCLI. Click
the selection button of the mouse in the window for the CLI you wish to close,
and type:

ENDCLI

That’s all there is to it.

Closing Comments

The above series of command descriptions introduces you to the kinds of
things you can do with AmigaDOS commands from the CLI. There are several
commands that haven’t been covered in the above session at all. In addition,

INTRODUCING AMIGADOS 39

most of the commands described above have other ““templates” (ways you can
enter the commands) and options that haven’t been demonstrated.

Chapter 2 of the AmigaDOS User’s Manual contains a reference section that
shows the templates for each of the commands in AmigaDOS. You can look at
the description for each command to find more information. Once you are
familiar with the commands, and the forms in which you can use them, the
quick reference listing at the end of the chapter will be useful to remind you of
the commands that are available.

1.7 Conventions Used

In Chapter 2 of this manual, in the “Format” description for the AmigaDOS
commands, you will find the following notations used:

<name> Indicates a parameter name that you should fill in for this com-
mand. Example: EXECUTE <commandfile> where the name
of the command file is a required parameter.

[] Square brackets are used to indicate that an item is optional. It

needn’t be provided for the command to function but, if pro-
vided, conveys additional information to AmigaDOS about how
to perform the command. Example: QUIT [<code>]
A vertical bar tells you that you can select one or another of the
alternatives that are separated by the vertical bar for a command.
Example: DIR [OPT A | I| AI] The example indicates that you can
choose A, I or Al for the specification.

<name>* Indicates one-or-more occurrences of a parameter name; if you
supply more than one such parameter, individual parameters
must be separated by at least one blank space.

For AmigaDOS CLI commands, unless some form of punctuation, such as a
comma or a plus-sign is actually included in the command Format line, you
must always separate the parameters with blank spaces. Don’t confuse the
Format information with the “Template” for the command. The command
template is explained in section 1.4.5 of the AmigaDOS User’s Manual.

Chapter 2
AmigaDOS Commands

This chapter is divided into two parts: the first part describes the user com-
mands available on the Amiga; the second describes the developer commands.
The user commands fall into several categories: file utilities, CLI control,
command sequence control, and system and storage management. Part I pro-
vides alphabetized command descriptions that give the format, template, pur-
pose, and specification of each command as well as an example of its use. Part
2 has the same organization.

The chapter starts with a list of unfamiliar terminology. At the end of the chapter
there is a quick Contents reference card that lists all the commands by function.

2.1 AmigaDOS User's Commands
2.2 AmigaDOS Developer’s Commands
2.3 AmigaDOS Commands Quick Reference Card

2.1 AmigaDOS User’s Commands

Unfamiliar Terminology

In this manual you could find some terms that you have not seen before. The
list below includes some common terms that are confusing if you are unfamil-
iar with them.

Boot startup. It comes from the expression “pulling yourself up by
your bootstraps.”

Default initial setting or, in other words, what happens if you do
nothing. So that, in this manual, “default” is used to mean
“in absence of something else”.

Device name part of a name that precedes the colon (:), for example, CON,
DFOQ:, PRT:, and so forth.

AMIGADOS COMMANDS 41

File handle an internal AmigaDOS value that represents an open file or
device.

Logical device a name you can give to a directory with ASSIGN that you can
then use as a device name.

Object code binary output from an assembler or compiler, and binary
input to a linker.

Reboot restart.

Stream an open file or device that is associated with a file handle. For

example, the input stream could be from a file and the output
stream could be to the console device.

System disk a disk containing the Workbench and commands.

Volume name a name you give to a physical disk.

Note: Command format is explained in section 1.7; command template is
explained in section 1.4.5.

14

Format: [<command>];[<comment>]

Template: ‘“’command”;”’comment”

Purpose: To add comments to command lines.
Specification:

The CLI ignores everything after the semicolon (;).

Examples:
;This line is only a comment
ignores the part of the line containing “This line is only a comment.”
copy <file> to prt: ; print the file
copies the file to the printer, but ignores the comment “print the file.”
See also: EXECUTE

><

Format: ~ <command>[>outputfilename][inputfilename][<commandargs*]
Template: ““command”>“TO"”<”FROM” “args”
Purpose: To direct command input and output.

42 AMIGADOS USER'S MANUAL

Specification:

You use the symbols > and < to direct the output and input of a command.
The direction of the point of the angle bracket indicates the direction of
information flow. You can use these symbols to change where any command
reads input or writes output. The output from a command usually goes to the
current window. However, if you type a > symbol after a command and before
a filename, the command writes the output to that file instead. Similarly, if you
type the < symbol before a filename, the command reads from that file instead
of from the keyboard.

You do not have to specify both the TO and FROM directions and files. The
existence and number of “args”” depends on the command you used. Redirec-
tion only happens for the command you specified. AmigaDOS reverts to the
initial or ““default” input and output (that is, the keyboard and current window)
afterward. Notice that redirection must precede the arguments.

Examples:
DATE > diary__dates

writes the output of the DATE command (that is, today’s date and time) to the
file “diary__dates”.

my_ _program < my__input

tells my__program to accept input from my__input instead of from the
keyboard.

LIST > temp
SORT temp TO *

produces a sorted list of files and displays them on the screen.
The following sequence:

ECHO > 2nd.date O2-jan-78
DATE < 2nd.date ?
DELETE 2nd.date

creates a file called 2nd.date that contains the text “02-jan-78<linefeed>"". Next
it uses this file as input to the command DATE. Note that the “?” is necessary
for DATE to accept input from the standard input, rather than the command
line. Finally, as you no longer need the file, the DELETE command deletes
2nd.date.

AMIGADOS COMMANDS 43

ASSIGN

Format: ASSIGN [[<name>]<dir>][LIST]

Template: ASSIGN “NAME,DIR,LIST/S”

Purpose: To assign a logical device name to a filing system directory.
Specification:

NAME is the logical device name given to the directory specified by DIR.

If you just give the NAME, AmigaDOS deletes the logical device name given
(that is, it removes the assignment).

ASSIGN without any parameters or the switch LIST diplays a listing of all
current assignments.

When you use ASSIGN, you must ensure that there is a disk inserted in the
drive. This is important because ASSIGN makes an assignment to a disk volume
and not to a drive.

Note that the effect of ASSIGN is lost when you restart or “reboot” your
computer.

Examples:

ASSIGN sources: :new/work
Sets up the logical device name ““sources” to the directory “new/work”. Then
to gain access to files in “:new/work”, you can use the logical device name
“sources’’, as in

TYPE sources:xXyz
which displays the file “:new/work/xyz".

ASSIGN LIST

lists the current logical device names in use.

BREAK

Format: ~ BREAK <task>[ALL][C][D][E][F]

Template: BREAK “TASK/A,ALL/S,C/S,D/S,E/S, F/S”

Purpose: To set attention flags in the given process.

Specification:

BREAK sets the specified attention flags in the process. C sets the CTRL-C flag,
D sets the CTRL-D flag, and so on. ALL sets all the flags from CTRL-C through

44 AMIGADOS USER’'S MANUAL

CTRL-F. By default, AmigaDOS only sets the CTRL-C flag. The action of
BREAK is identical to selecting the relevant process by moving the mouse to
the window, clicking the Selection Button, and pressing the required control
key combination.

Examples:

BREAK 7

sets the CTRL-C attention flag of process 7. This is identical to selecting process
7 and pressing CTRL-C.

BREAK 5D
sets the CTRL-D attention flag of process 5.
BREAK 3D E

sets both CTRL-D and CTRL-E.

CD

Format: CD[<dir>]

Template: CD “DIR”

Purpose: ~ To set or change a current directory or drive.

Specification:

CD with no parameters displays the name of the current directory. In the
format list above, <dir> indicates a new current directory (that is, one in
which unqualified filenames are looked up). If the directory you specify is not
on the current drive, then CD also changes the current drive.

To change the current directory to the directory that owns the current one (if
one exists), type CD followed by a single slash (/). Thus CD / moves the
current directory one level up in the hierarchy unless the current directory is a
root directory (that is, the top level in the filing system). Multiple slashes are
allowed; each slash refers to an additional level above.

Examples:
CD dfl:work

sets the current directory to “work” on disk “df1”, and sets the current drive
to “df1”.

AMIGADOS COMMANDS 45

CD 8YS:COM/BASIC
CDh/

sets the current directory to “SYS:COM”.

CcOory

Format: ~ COPY [[FROM]<name>][TO<name>][ALL][QUIET]

Template: COPY “FROM,TO/A,ALL/S,QUIET/S”

Purpose: To copy a file or directory from one place to another.

Specification:

COPY places a copy of the file or directory in the file or directory specified as
TO. The previous contents of TO, if any, are lost.

If you specify a directory name as FROM, COPY copies all the files in the
FROM directory to the TO directory. If you do not specify the FROM directory,
AmigaDOS uses the current directory. The TO directory must exist for COPY to
work; it is not created by COPY.

If you specify ALL, COPY also copies the files in any subdirectories. In this
case, it automatically creates subdirectories in the TO directory, as required.
The name of the current file being copied is displayed on the screen as it
happens unless you give the QUIET switch.

You can also specify the source directory as a pattern. In this case, AmigaDOS
copies any files that match the pattern. See the command LIST for a full
description of patterns. You may specify directory levels as well as patterns.

Examples:
COPY filel TO :work/fileR

copies ‘filel” in the current directory to “file2” in the directory “:work”.
COPY TO dfl:backup

copies all the files in the current directory to “dfl:backup”. It does not copy any
subdirectories, and df1: backup must already exist.

COPY df0: to dfl: ALL QUIET

makes a logical copy of disk“df0” on disk”dfl” without any reflection of
filenames.

COPY test-#? to dfl:xyz

46 AMIGADOS USER'S MANUAL

copies all files in the current directory that start “test-” to the directory xyz on
the disk “df1”, assuming that “xyz” already exists. (For an explanation of pat-
terns, such as “#?”, see the command LIST in this chapter.)

COFY test_ file to PRT:
copies the file “test_file” to your printer.
COPY * TO CON:10/10/200/100/

Click the window that you typed the copy command into. This ““reactivates’ it
so that console input is taken from there. Every time you type a line it will be
displayed in the new window. Press CTRL-\ when you are done and the new
window will close.

COPY DFO:?/#? TO DF1: ALL

copies every file in any one character subdirectory of DFO: to the root directory
of DF1:.

See also: JOIN

DATE

Format: DATE [<date>][<time>][TO|VER<name>>]

Template: DATE “DATE, TIME, TO = VER/K”

Purpose: To display or set the system date or time.

Specification:

DATE with no parameter displays the currently set system date and time. This
includes the day of the week. Time is displayed using a 24-hour clock.

DATE <date> sets the date. The form of <date> is DD-MMM-YY. If the
date is already set, you can reset it by specifying a day name (this sets the date
forward to that day) or by specifying ‘tomorrow’ or ‘yesterday’.

DATE <time> sets the time. The form of <time> is HH:MM (for Hours
and Minutes). You should use leading zeros when necessary. Note that,
if you use a colon (:), AmigaDOS recognizes that you have specified the time
rather than the date. That is to say, you can set both the date and the time, or
either date or time in any order because DATE only refers to the time when
you use the form HH:MM.

If you do not set the date, the restart disk validation process sets the system
date to the date of the most recently created file. See Chapter 1 for details on the
restart validation process.

AMIGADOS COMMANDS 47

To specify the destination of the verification, you use the equivalent key-
words TO and VER. The destination is the terminal unless you specify otherwise.

Note: If you type DATE before the restart validation has completed, the time
is displayed as unset. To set the time, you can either use DATE or just wait
until the validation process is finished.

Examples:
DATE

displays the current date.
DATE 06-Sep-82

sets the date to the 6th of September 1982. The time is not reset.
DATE tomorrow
resets the date to one day ahead.
DATE TO fred
sends the current date to the file “fred”.
DATE 10:50
sets the current time to ten 'til eleven.
DATE 23:00
sets the current time to 11:00 p.m.
DATE O1-JAN-02

sets the date to January 1st, 2002. (The earliest date you can set is 01-JAN-78.)

DELETE

Format: ~ DELETE <name>[<name>*][ALL][Q|QUIET]

Template: DELETE “,,,,,,,,,,ALL/S,Q=QUIET/S”

Purpose: To delete up to ten files or directories.

Specification:

DELETE attempts to delete each file you specify. If it cannot delete a file,
the screen displays a message, and AmigaDOS attempts to delete the next
file in the list. You may not delete a directory if it contains any files.

48 AMIGADOS USER’'S MANUAL

You can also use a pattern to specify the filename. See the description of the
command LIST for full details of patterns. The pattern may specify directory
levels as well as filenames. In this case, all files that match the pattern are
deleted.

If you specify ALL with a directory name, DELETE will delete that directory
and all subdirectories and files within that directory and its subdirectories.

Unless you specify the switch QUIET (or use the alternative, Q), the name of
the file being deleted appears on the screen as it happens.

Examples:
DELETE old-file
deletes the file “old-file”.
DELETE work/progl work/prog? work

deletes the files “progl” and “prog2” in the directory “work”, and then deletes
the directory “work”.

DELETE t#?/#?(11R)

deletes all the files that end in “1” or “2” in directories that start with “t”’. (For
an explanation of patterns, such as “#?”, see the command LIST later in this
chapter.)

DELETE DF1:#% ALL
deletes all the files on DF1:.

See also: DIR (1-DEL option)

DIR

Format: ~ DIR[<name>][OPT A|[|AI]

Template: DIR “DIR,OPT/K”

Purpose: To provide a display of the files in a directory in sorted order. DIR
can also include the files in subdirectories, and you can use DIR in
interactive mode.

Specification:

DIR alone shows the files in the current directory. DIR followed by a directory

provides the files in that directory. The form of the display is first any

AMIGADOS COMMANDS 49

subdirectories, followed by a sorted list of the files in two columns. If you want
to know if a file exists type LIST filename.

Typing DIR filename, where filename is a file which exists results in the
Amiga responding with: “filename is not a directory.”

To pass options to DIR, use the OPT keyword. Use the A option to include
any subdirectories below the specified one in the list. Each sublist of files is
indented.

To list only the directory names use the D option.

The I option specifies that DIR is to run in interactive mode. In this case, the
files and directories are displayed with a question mark following each name.
Press RETURN to display the next name in the list. To quit the program, type
Q. To go back to the previous directory level or to stop (if at the level of the
initial directory), type B.

If the name displayed is that of a directory, type E to enter that directory and
display the files and subdirectories. Use E and B to select different levels.
Typing the command DEL (that is, typing the three letters D E L, not pressing
the DEL key) can be used to delete a directory, but this only works if the
directory is empty.

If the name is that of a file, typing DEL deletes the file, or typing T Types
(that is, displays) the file on the screen. In the last case, press CIRL-C to stop
it“typing” and return to interactive mode.

To find the possible responses to an interactive request, type?.

Examples:
DIR

provides a list of files in current directory.
DIR df0: OPT a

lists the entire directory structure of the disk “df0”.

DISKCOPY

Format: DISKCOPY [FROM]<disk>TO<disk>[NAME <name>]

Template: DISKCOPY “FROM/A, TO/A/K,NAME/K”

Purpose: To copy the contents of one 3-%2 inch floppy disk to another.
Specifications:

DISKCOPY makes a copy of the entire contents of the disk you specified as
FROM, overwriting the previous contents of the entire disk you specified as

50 AMIGADOS USER'S MANUAL

TO. DISKCOPY also formats a new disk as it copies. You normally use the
command to produce backup floppy disks.

Once you have given the command, AmigaDOS prompts you to insert the
correct disks. At this point, you insert the correct source and destination disks.

You can use the command to copy any 3-%2 inch AmigaDOS disk to another,
but the source and destination disks must be identical in size and structure. To
copy information between different sized disks, you use COPY.

You can also use the command to copy a floppy disk using a single floppy
drive. If you specify the source and destination as the same device, then the
program reads in as much of the source disk into memory as possible. It then
prompts you to place the destination disk in the drive and then copies the
information from memory onto the destination disk. This sequence is repeated
as many times as required.

If you do not specify a new name for your disk, DISKCOPY creates a new
disk with the same name as the old one. However, AmigaDOS can tell the
difference between two disks with the same name because every disk is
associated with the date and time of its creation. DISKCOPY gives the new
disk the current system date as its creation date and time.

Note: To copy part of a disk, you can use COPY to RAM:.

Examples:
DISKCOPY FROM 4f0: TO dfl:
makes a backup copy of the disk “df0"” onto disk “df1”.
DISKCOPY FROM dfO: To dfO:
makes a backup copy of the disk in drive ““df0” using only a single drive.

See also: COPY

ECHO

Format: ~ ECHO <string>

Template: ECHO " “

Purpose: To display the argument given.

Specification:

ECHO writes the single argument to the current output stream (which can be a
file or a device). This is normally only useful within a command sequence or as
part of a RUN command. If you give the argument incorrectly, an error is
displayed.

AMIGADOS COMMANDS 51

Examples:

RUN COFY :work/prog to dfl:work ALL QUIET +
ECHO “Copy finished”

creates a new CLI to copy the specified directory as a background process.
When it has finished, the screen displays

Copy finished
If the following Execute file exists

ECHO “Starting ‘MYCOPY’ Execute file”
COPY DF1:ABC TO RAM:ABC

COPY DF1:XYZ TO RAM:XYZ

ECHO “Remove the diskette in DF1:”
ECHO “Insert the new diskette in DF1:”
WAIT 10 SECS

COPY RAM:ABC TO DF1:ABC

COPY RAM:XYZ TO DF1:ABC

ECHO “Done”

then
EXECUTE MYCOFY

copies 2 files to RAM disk and back.

ED

Format: ~ ED[FROM]<name>[SIZE<n>>]
Template: ED “FROM/A,SIZE”
Purpose: To edit text files.
Specification:
ED is a screen editor. You can use ED as an alternative to the line editor EDIT.
The file you specify as FROM is read into memory, then ED accepts your editing
instructions. If FROM filename does not exist, AmigaDOS creates a new file.
Because the file is read into memory, there is a limit to the size of file you can
edit with ED. Unless you specify otherwise, workspace size is 40,000 bytes.
This workspace size is usually sufficient for most files. However, to alter the
workspace, you specify a suitable value after the SIZE keyword.
There is a full specification of ED in Chapter 3.

52 AMIGADOS USER’S MANUAL

Examples:
ED work/prog

edits the file “work/prog”’, assuming it exists; otherwise, ED creates the file.
ED huge-file SIZE 50000

edits a very large file “"huge-file”, using a workspace of 50,000 bytes.

EDIT

Format: EDIT [FROM]<name>[[TO]<name>][WITH<name>][VER<name>]
[OPT<option>]

Template: EDIT “FROM/A,TO,WITH/K, VER/K,OPT/K”
Purpose: To edit text files.
Specification:
EDIT is a line editor (that is, it edits a sequential file line by line). If you specify
TO, EDIT copies from file FROM to file TO. Once you have completed the
editing, the file TO contains the edited result, and the file FROM is unchanged.
If you do not specify TO, then EDIT writes the edited text to a temporary file.
If you give the EDIT commands Q or W, then EDIT renames this temporary file
FROM, having first saved the old version of FROM in the file “:t/edit-backup”.
If you give the EDIT command STOP, then EDIT makes no change to the file
FROM.

EDIT reads commands from the current input stream, or from a WITH file if
it is specified.

EDIT sends editor messages and verification output to the file you specify
with VER. If you omit VER, the terminal is used instead.

OPT specifies options: Pn sets the maximum number of previous lines to n;
Wn sets the maximum line width. The initial setting is P4AOW120.

Note: You cannot use the < and > symbols to redirect input and output
when you call EDIT.

See Chapter 4 for a full specification of EDIT.

Examples:
EDIT work/prog

edits the file “work/prog”. When editing is complete, EDIT saves the old
version of “work/prog” in “:t/edit-backup”.

AMIGADOS COMMANDS 53

EDIT work/prog TO work/newprog
edits the file “work/prog”, placing the edited result in the file “work/newprog”.
EDIT work/prog WITH edits/O VER nil:

edits the file “work/prog” with the edit commands stored in the file “edits/0”.
Verification output from EDIT is sent to the dummy device “nil:”.

ENDCLI

Format: ~ ENDCLI

Template: ENDCLI

Purpose: To end an interactive CLI process.

Specification:

AmigaDOS only allows ENDCLI as an interactive command. ENDCLI removes
the CLI currently selected by the mouse.

You shouldn’t use ENDCLI except on a CLI created by the NEWCLI com-
mand. If the initial CLI (process 1) is ended, and no other has been set up by
the NEWCLI command, then the effect is to terminate the AmigaDOS session.

Note that there are no arguments to the ENDCLI command, and no check
for invalid arguments.

Note: Do not experiment with ENDCLI before you've used NEWCLI. Using
ENDCLI on the initial CLI always pulls the rug out from under you by
terminating that CLI. If you started the CLI from the Workbench, then there is
no problem as you are returned to the Workbench. If you started AmigaDOS
with just the CLI running, then ending the last CLI gives you no way of
creating a new one.

Examples:
The following sequence:

NEWCLI
LIST
ENDCLI

opens a new window, lists the directory, and closes the window again.

54 AMIGADOS USER'S MANUAL

EXECUTE

Format: EXECUTE <commandfile>{<arg>*]

Template: EXECUTE ““command-file”,”"args”

Purpose: To execute a file of commands with argument substitution.
Specification:

You normally use EXECUTE to save typing. The command file contains com-
mands executed by the Command Line Interface. AmigaDOS executes these
commands one at a time, just as though you had typed them at the keyboard.
If the execution creates a new CLI window, the results may not be identical to
typing at the keyboard. :

You can also use EXECUTE to perform parameter (that is, value) sub-
stitution, where you can give certain names as parameters. Before the
command file is executed, AmigaDOS checks the parameter names with those
you've given after the EXECUTE command. If any match, AmigaDOS uses
the values you specified instead of the parameter name. Parameters may
have values specified that AmigaDOS uses if you do not explicitly set the
parameter. If you have not specified a parameter, and if there is no default,
then the value of the parameter is empty and nothing is substituted for
it.

To use parameter substitution, you give directives to the EXECUTE com-
mand. To indicate these, you start a line with a special character, which is
initially a period or “dot” (.). The directives are as follows:

KEY Argument template, used to specify
the format of the arguments, may be abbreviated

to .K

.DOT ch Change dot character (initially”.”’) to ch

.BRA ch Change bra character (initially “<"’) to ch

.KET ch Change ket character (initially “>"") to ch

.DOLLAR ch Change default-char (initially ““$”) to ch, may be
abbreviated to .DOL

.DEF keyword value Give default to parameter

.<space> Comment line

.<newline> Blank comment line

Before execution, AmigaDOS scans the contents of the file for any items
enclosed by BRA and KET characters (“<”" and “>"). Such items may consist
of a keyword or a keyword and a default value for AmigaDOS to use if you have
left the keyword unset. (To separate the keyword and the default, if there is
one, you type a dollar sign “$”). Thus, AmigaDOS replaces <ANIMAL> with

AMIGADOS COMMANDS 55

the value you associated with the keyword ANIMAL, while it replaces
<ANIMAL$WOMBAT> with the value of ANIMAL if it has one, and other-
wise it defaults to WOMBAT.

A file can only use the dot commands if the first line has a dot command
on it. The CLI looks at the first line. If it starts with a dot command,
for example, a comment (.<space>txt) then the CLI scans the file looking
for parameter substitution and builds a temporary file in the :T directory.
If the file doesn’t start with a dot command, then it is assumed that there
are NO dot commands in the file, which also means no parameter substi-
tution is performed. For the no-dot case, the CLI starts executing the file
directly without having to copy it to :T. Note that you can still embed
comments in an execute file by using the CLI's comment character, the
semicolon (;). If you don’t need parameter substitution and dot commands,
don’t use them. They save you extra accesses to the disk for the temporary
file.

AmigaDOS provides a number of commands that are only useful in com-
mand sequence files. These include IF, SKIP, LAB, and QUIT. These can be
nested in a command file.

Note that you can also nest EXECUTE files. That is, you can have a com-
mand file that contains EXECUTE commands.

To stop the execution of a command file, you press CTRL-D. If you are
nesting command files, that is, if one command file calls another, you can stop
the entire set of EXECUTE commands by pressing CTRL-C. CTRL-D only stops
the current command file from executing.

Examples:
Assume the file “list” contains the following:

Kk filename/a

run copy <filename> to prt: +

echo “Printing of <filename> done”
Then the following command

EXECUTE list test/prg

acts as though you had typed the following commands at the keyboard.

RUN copy test/prg to prt: +
ECHO “Printing of test/prg done”

Another example, “display”, uses more of the features described above:

56 AMIGADOS USER'S MANUAL

key name/a

IF EXISTS <name>

TYPE <name> OPT n (If the file given is on the current directory, type it
with line numbers)

ELSE

ECHO “<name> is not on this directory”

ENDIF

RUN EXECUTE display work/prga

should display the file work/prg2 with line numbers on the terminal if it exists
on the current directory. If the file is not there, the screen displays the
following message:

work/prg? is not on this directory.

See also: ;,IF,SKIP,FAILAT,LAB,ECHO,RUN,QUIT

Additional Examples for the EXECUTE Command:

Example #1
Parameter Substitution by Keyword Name and/or Position

The .KEY (or .K) statement supplies both keyword names and positions in
command files. It tells EXECUTE how many parameters to expect and how to
interpret them. In other words, .KEY serves as a “template” for the parameter
values you specify. Only one .KEY statement is allowed per command file. If
present, it should be the first command line in the file.

When you enter a command line, AmigaDOS resolves parameter substitu-
tions for the keywords in two ways: by specification of the keyword in front of
the parameter, and by the relative positions of the parameters in the line.
Keyword name substitution takes precedence.

Assume that the execute file named DEMOI1 contains the following .KEY
statement:

KEY flash,pan

tells AmigaDOS to expect two parameter substitutions, <flash> and <pan>.
(The angle brackets indicate the keyword value to be substituted at execution
time.)

Suppose you enter the following command line:

AMIGADOS COMMANDS 57

EXECUTE DEMO1 pan somename flash othername

The value “othername” is assigned to <flash>, and the value “somename” is
assigned to <pan>.

You can omit the keyword names if the parameter substitutions are in the
order given in the .KEY statement. For example, the following statement is
equivalent to the preceding one:

EXECUTE DEMO1 othername somename

This is because the values correspond to the keyword order specified in the
.KEY statement.

You can also mix the two methods of parameter substitution. Suppose you
have a .KEY statement with several parameters, as follows:

KEY wordl, word?, word3, word4

The execute file processor removes parameter names from the input line
to fill the meanings of any keyword values it finds. Then, with any remaining
input, it fills the leftover keyword positions according to the position of the
input value.

For example:

EXECUTE DEMO2 word3 ccc wordl aaa bbb ddd

The processor assigns ccc to <word3>, aaa to <word1>, and has two
parameters left over. Scanning from left to right in the .KEY statement, it finds
that <word2> is still unassigned. Thus, <word2> gets the next input word,
bbb. Finally, <word4> hasn’t been assigned either, so it gets the last input
word, ddd.

You can indicate special conditions for parameter substitution, as follows:
KEY namel/a, name/a, name3, name4/k

The “/a” indicates that a value must be supplied to fill the parameters for
namel and name2. Values for name3 and name4 are optional, though the ““/k”’
indicates that <name4> (if supplied) must be preceded by the explicit keyword
“named4.” For example:

EXECUTE DEMOS fee fie foe name4 fum

If the user does not supply a required parameter (such as namel or name2 in
the preceding example), EXECUTE issues an error message.

58 AMIGADOS USER’S MANUAL

As an example of the use of the /k option, suppose you have created an
execute file named COMPILE and it lets you optionally specify a filename to
which a printout of the compilation is to be directed. Your .key statement
might read:

Xkey compilewhat/a,printfile/k
If a user enters a line such as:
EXECUTE COMPILE myfile PRINTFILE myprint

the execute file says the keyword PRINTFILE is optional and need not be
supplied, but if used, there must be a value entered along with it. Thus

the above line is correct, since myprint is specified as the target output
file.

Example #2
Assigning Default Parameters and Different Bracket Characters

KEY wordl

The .DEF directive establishes a default value for a keyword if the user does
not specify a value on the command line. To detect an unsupplied parameter
value, you can compare it to “” (two double-quotes in a row). You must
perform this comparison before executing any .DEF statement in the execute
file. '

You can assign defaults in either of two ways. The first way requires that
you specify the default every time you reference a parameter, using the “$”
operator.

For example, in the following statement:

ECHO “<wordl$defwordl> is the default for Wordl.”
“defwordl” is the default specified for wordl and is printed when the above
statement executes. The second way is to define a default once. For example,
with the following assignment:

DEF wordl “defwordl”

you can execute the following statement:

ECHO “<wordl> is the default for Wordl.”

AMIGADOS COMMANDS 59

The output of both of the above ECHO statements will be:
defwordl is the default for Wordl.
Note that a second use of .DEF for a given parameter has no effect:

DEF wordl “——— New default———"
ECHO “<wordl> is STILL the default for Wordl.”

(The first assignment, “defword1” will be substituted for word1 at execution
time.)

Assigning Different Bracket Characters

Wherever EXECUTE finds enclosing angle brackets, it looks within them to see
if it can substitute a parameter. An unsupplied parameter with no default
becomes a “null” string.

Suppose you want to use a string that contains the angle bracket characters,
< and >. You can use the directives .BRA and .KET to define substitutes for
the bracket characters. For example,

ECHO “This line does NOT print <angle> brackets.”
BRA {

KET }

ECHO “This line DOES print <angle> brackets.”
ECHO “The default for wordl is {wordl}.”

The first ECHO statement causes the processor to look for the parameter
substitution for “angle,” since that’s the current meaning of the angle bracket
characters. Since “angle” wasn’t included in the .KEY statement, the processor
substitutes the null string for it. Then, after the .BRA and .KET directives
redefine the bracket characters, the second ECHO statement prints the characters:

This line DOES print <angle> brackets.

The third ECHO statement illustrates that the braces ({ and }) now function
to enclose keywords for the purpose of parameter substitution.

Example #3
File Copy Simulation Showing Command File Structures
The IF statement lets you perform tests and cause different actions based on

the results of those tests. Among the possible tests are testing strings for
equality and testing to see if a file exists. You can use an ELSE statement with

60 AMIGADOS USER'S MANUAL

an IF to specify what should be done in case the IF condition is not true. The
ELSE statement, if used, is considered a part of the IF statement block. An
ENDIF terminates an IF statement block.

The example programs below also use a SKIP statement. The SKIP statement
lets you skip FORWARD ONLY within your execute file to a label defined by a
LAB statement.

The IF . . . ENDIF structure is illustrated by the following short example. It is
generally a good idea to test for keywords that might be omitted, or might be
entered as null (“”) in quotes, as shown below:

IF “<wordl>" EQ “usage”
SKIP USAGE

ENDIF

IF “<wordR>" EQ
SKIP USAGE

ENDIF

Enclosing your parameter substitution words in double quotes within IF
statements prevents EXECUTE from reporting an error if the keyword is
omitted.

If you omit the double quotes and the value is not supplied, the result can be
a line that reads:

IF EQ “usage”
This produces an error, because the two operators IF and EQ are adjacent.
Using double quotes around the keyword replacement indicators results in a
line that reads:

IF “”» EQ l(usa'ge11
which is legal.

You can use NOT in an IF statement to reverse the meaning of the test you
perform. For example:

IF NOT exists <from>

There can be nothing on the IF line other than the test condition. For
example, the following is incorrect:

IF <something> EQ true SKIP DONE

The correct form of the above statement is as follows:

AMIGADOS COMMANDS 61

IF <something> EQ “true”
SKIP DONE
ENDIF

As the example above shows, the string constant tested for need not be
enclosed in double quotes; in the preceding example, either “TRUE” or TRUE
is acceptable.

As shown in the sample command file below, IF statements can be nested so
that commands can be executed based on multiple true statements. Note that
EXECUTE lets you indent to make the nesting of IF statements more readable.

The following sample command file simulates a file copying utility that
illustrates certain useful structures in a command file: IF ... [ELSE] . ..
ENDIF, LAB, and SKIP.

KEY from, to ;(Assign parameter list)
IF “<from>" eq “” ;(Check for a FROM file)
being supplied.
SKIP usage ;(No file, show user how to)
use.
ENDIF
IF “<to>"eq ‘" ;(Check for a TO file)
being supplied.
SKIP usage ;(No file, show user how to use)
ENDIF
IF NOT exists <from> ;(Check if FROM file doesn’t exist)

ECHO “The from file you selected ;(<from>>) could not be found.”
ECHO “Please use the DIR or LIST command and try again.”

SKIP DONE ;(Note: We can SKIP out of an IF.)
ENDIF
IF exists <to> ;(Check if TO file exists.)

IF “<o>" EQ “0” ;(Did the user supply “O”)

on the line?
copy from <from> to <to>
ECHO “Replaced file named <to> with a copy of file named <from>"
ECHO “Request fulfilled.”
ELSE
ECHO “Command will overwrite an existing file ONLY if”
ECHO “the O parameter is specified.”
ECHO “Request Denied”
SKIP usage ;(Explain how to use this file)
ENDIF

62 AMIGADOS USER’S MANUAL

ELSE

ECHO “copy from <from> to <to>."
ENDIF
SKIP DONE

LAB usage

ECHO “cp: usage....”

ECHO “The following copy forms are supported:”

ECHO “ x cp FROM sourcefile TO destinationfile”

ECHO “ x ¢cp FROM sourcefile destinationfile”

ECHO “ x cp sourcefile TO destinationfile”

ECHO “ x cp sourcefile destinationfile”

ECHO “ x ¢p TO destinationfile FROM sourcefile”

ECHO “ x c¢p sourcefile destinationfile 0”

ECHO “ x ¢cp FROM sourcefile TO destinationfile 0”

ECHO “ x cp O FROM sourcefile TO destinationfile”

ECHO “where: x is short for EXECUTE; cp is the name of”
ECHO “this command file, and “0” means ‘overwrite existing file’.”

LAB DONE

Example #4
Sample Looping Batch File

The SKIP command allows only forward jumps. To create a loop structure
within a command file, use EXECUTE iteratively. That is, use the EXECUTE
command within the file itself to send execution backwards to a label. The
following executable example illustrates looping.

This file displays five messages:

“This message prints once at the beginning. (parml, parm?2)”
“Loop number 1.”

“Loop number II1.”

“Loop number ITL”

“This message prints once at the end. (parml, parma&)”

XKEY parml,parmg, loopcnt, looplabel

FAILAT 20

IF NOT “<looplabel>" EQ “” ;(Called with label?)
SKIP <looplabel> ;(Yes, then loop.)

ENDIF

ECHO “This message prints once ;(Start of loop)
at the beginning. (<parml>, <parm&>)"

AMIGADOS COMMANDS 63

LAB lst-loop

IF “<loopent>" EQ “III” ;(Are we done looping?)
SKIP loopend-<looplabel > ;(Yes, unwind.)

ENDIF

ECHO “Loop number <loopent>I" ;(Go “backwards” in this file.)
EXECUTE. loop.sample “<parml>" “<parm®>" <loopcnt>I 1st-loop

LAB loopend-<looplabel>
IF NOT “<loopent>" EQ “”
SKIP EXIT
ENDIF
;(End of loop)
ECHO “This message prints once at the end. [<parml>,<parm2>)"

LAB EXIT

FAILAT

Format: FAILAT <n>

Template: FAILAT “RCLIM”

Purpose: To instruct a command sequence to fail if a program returns an error
code greater than or equal to this number.

Specification:

Commands indicate that they have failed in some way by setting a return code.

A nonzero return code indicates that the command has found an error of some

sort. A return code greater than or equal to a certain limit (the fail limit)

terminates a sequence of noninteractive commands (that is, the commands

that you specify after RUN or in an EXECUTE file). The return code indicates

how serious the error was, and is normally 5, 10, or 20.

You may use the FAILAT command to alter this fail level from its initial
value of 10. If you increase the level, you indicate that certain classes of error
should not be regarded as fatal, and that execution of subsequent commands
may proceed after an error. The argument should be a positive number. The
fail level is reset to the initial value of 10 on exit from the command sequence.

You must use FAILAT before commands such as IF to test to see if a
command has failed; otherwise, the command sequence terminates before
executing the IF command.

If you omit the argument, the current value of the fail level is displayed.

Examples:

FAILAT 25

64 AMIGADOS USER’S MANUAL

The command sequence only terminates before the end if a command stops
with a return code greater than or equal to (>=)25.

See also: IF, EXECUTE,RUN,QUIT

FAULT

Format: FAULT[<n>*]

Template: FAULT “,,,,,,,,,”

Purpose: To display the messages corresponding to the fault codes you supply.
Specification:

AmigaDOS looks up the numbers and displays the corresponding messages. Up
to ten messages may be displayed.

Examples:
FAULT 222

displays the message for fault 222.
FAULT 221 103 121 218

displays the messages for faults 221, 103, 121, and 218.

FILENOTE

Format: FILENOTE[FILE]<file>COMMENT <string>
Template: FILENOTE “FILE/A, COMMENT/K"”
Purpose: To attach a comment or a note to a file.
Specification:

FILENOTE assigns a comment to a specified file.

The keyword COMMENT introduces an optional comment of up to 80
characters. A comment may be more than one word (that is, contain spaces
between characters). In this case, you must enclose the comment within double
quotes ().

A comment is associated with a particular file. When you examine the file
with the command LIST, the comment appears on the line below:

prog 30 rwed Today 11:07:33
: version 3.2 - 3-mar-85

When you create a new file, it does not normally have a comment. If you
overwrite an existing file that has a comment, then the comment is retained

AMIGADOS COMMANDS 65

even though the contents of the file have changed. The command COPY copies
a file. If a file with a comment is copied, the new file does not have the
comment from the original attached to it although the destination file may have
a comment which is retained.

Examples:
FILENOTE prog? COMMENT “Ver 3.3 26-mar-85”
attaches the comment “Ver 3.3 26-mar-85" to program 2.

See also: LIST

FORMAT

Format: ~ FORMAT DRIVE <drivename> NAME <string>

Template: FORMAT"DRIVE/A/K,NAME/A/K”

Purpose: To format and initialize a new 3%-inch floppy disk.

Specification:

The program formats a new floppy disk in the method required for AmigaDOS.
Once the disk is formatted, it is initialized and assigned the name you specify.
Notice that you must give both the DRIVE and NAME keywords. The only
valid options that you can give after the DRIVE keyword are DF0:, DF1:,
DF2:, or DF3:. You can type any string after NAME, but if you use spaces,
you must enclose the whole string in double quotes (**).

WARNING: FORMAT formats and initializes a disk as an empty disk. If
you use a disk that is not empty, you'll lose the previous contents of the
disk.

The name assigned should be unique. It may be one to thirty characters in
length and composed of one or more words separated by spaces. If the
name is more than one word, you should enclose it in double quotes.

Note: It is not necessary to format a disk if you are about to DISKCOPY to it.
Examples:

FORMAT DRIVE dfO: NAME “Work disk”

formats and initializes the disk in drive “df0”” with the name “Work disk”.

See also: DISKCOPY,INSTALL,RELABEL

66 AMIGADOS USER'S MANUAL

IF

Format: IF[NOT][WARN][ERROR][FAIL][<str>EQ<str>][EXISTS <name>]
Template: IF “NOT/S,WARN/S,ERROR/S,FAIL/S, EQ/K, EXISTS/K”
Purpose: To allow conditionals within command sequences.
Specification:
You can only use this command in an EXECUTE command file. If one or more
of the specified conditions is satisfied, IF carries out all the following com- .
mands until it finds a corresponding ENDIF or ELSE command; otherwise, if
the conditions are not satisfied, it carries out whatever follows a corresponding
ELSE command. (ENDIF and ELSE are only useful in command sequences
containing IF.) ENDIF terminates an IF command; ELSE provides an alternative
if the IF conditions fail. Note that the conditions and commands in IF and
ELSE commands can span more than one line before their corresponding
ENDIFs.

The following table shows some of the ways you can use the IF, ELSE, and
ENDIF commands:

IF <condition> IF <condition> IF <condition>
<command> <command> <command>
ENDIF ELSE IF <condition>
<command> <command>
ENDIF ENDIF
ENDIF

Note that ELSE is optional and that nested IFs jump to the nearest ENDIF.
ERROR is only available if you set FAILAT to greater than 10. Similarly,
FAIL is only available if you set FAILAT to greater than 20.

Keyword Function

NOT reverses the result.

WARN satisfied if previous return code >=5.
ERROR S e
FAIL o gt 4> =20,

<a>EQ satisfied if the text of a and b is
identical (disregarding case).
EXISTS <file> satisfied if the file exists.

You can use IF EQ to detect an unset parameter in a command file by using
the form:

IF <a> EQ “”

AMIGADOS COMMANDS 67

Examples:

IF EXISTS work/prog
TYPE work/prog
ELSE

ECHO “file not, found”
ENDIF

If the file “work/prog” exists, then AmigaDOS displays it. Otherwise, AmigaDOS
displays the message “file not found” and executes the next command in the
command sequence.

IF ERROR
SKIP errlab
ENDIF

If the previous command stopped with a return code > =10, then AmigaDOS
skips the command sequence until you define a label “errlab” with the LAB
command.

IF ERROR

IF EXISTS fred

ECHO “The file ‘fred’ exists, but an error occurred anyway.”
ENDIF

ENDIF

See also: FAILAT,SKIP,LAB,EXECUTE,QUIT

INFO

Format: INFO

Template: INFO

Purpose: To give information about the filing system.

Specification:

The command displays a line of information about each disk unit. This
includes the maximum size of the disk, the current used and free space,
the number of soft disk errors that have occurred, and the status of the
disk.

Examples:

INFO

68 AMIGADOS USER’S MANUAL

Unit Size Used Free Full Errs Status Name
DF1l: 880K 2 1756 0% O Read/Write Test-6
DFO: 880K 1081 877 61% O Read/Write AmigaDOS CLI

Volumes available:
Test-6 [Mounted]
AmigaDOS CLI [Mounted]

INSTALL

Format: ~ INSTALL[DRIVE]<drive>

Template: INSTALL “DRIVE/A”

Purpose: To make a formatted disk bootable.

Specification:

The purpose of the INSTALL command is to make a disk bootable (that is, you
can use INSTALL to make a disk that starts up your Amiga). To do this, you
simply type the name of the drive where you have inserted the disk that you
want to become the boot (startup) disk. There are four possible drive names:
DF0:,DF1:,DF2:, and DF3:.

Examples:
INSTALL dfO:

makes the disk in drive “df0:”” a bootable disk.

JOIN

Format: JOIN <name> <name>[<name>*]AS<name>

Template: JOIN “,,,,,,,,,,,,,,,AS/A/K”

Purpose: To concatenate up to 15 files to form a new file.

Specification:

AmigaDOS copies the specified files in the order you give into the new
file. Note that the new file cannot have the same name as any of the input
files.

Examples:

JOIN partl partl AS textfile

AMIGADOS COMMANDS 69

joins the two files together, placing the result in “textfile”. The two original files
remain unchanged, while “textfile” contains a copy of “partl” and a copy of
“part2”.

LAB

Format: ~ LAB <string>

Template: LAB <text>

Purpose: To implement labels in command sequence files.

Specification:

The command ignores any parameters you give. Use LAB to define a label
“text”” that is looked for by the command SKIP.

Examples:
LAB errlab
defines the label “errlab” to which SKIP may jump.

See also: SKIP,IF,EXECUTE

LIST

Format: LIST[[DIR]<dir>][P|PAT <pat>][KEYS][DATES][NODATES][TO
<name>][S<str>][SINCE <date>][UPTO <date>][QUICK]
Template: LIST “DIR, P = PAT/K, KEYS/S, DATES/S, NODATES/S, TO/K, S/K,
SINCE/K,UPTO/K,QUICK/S”
Purpose: To examine and list specified information about a directory or file.
Specification:
If you do not specify a name (the parameter DIR), LIST displays the contents of
the current directory. The first parameter LIST accepts is DIR. You have three
options. DIR may be a filename, in which case LIST displays the file informa-
tion for that one file. Secondly, DIR may be a directory name. In this case LIST
displays file information for files (and other directories) within the specified
directory. Lastly, if you omit the DIR parameter, LIST displays information
about files and directories within the current directory (for further details on
the current directory, see the CD command).
Note: LIST, unlike DIR, does NOT sort the directory before displaying it.
If no other options are specified, LIST displays:

file__name size protection date time
:comment

70

AMIGADOS USER’S MANUAL

These fields are defined as follows:

file__name:

size:
protection:

date and time:

comment:

Name of file or directory.

The size of the file in bytes. If there is nothing in the file, this
field will state “empty”. For directories this entry states “’dir”.

This specifies the access available for this file; rwed indicates
Read, Write, Execute, and Delete.

The file creation date and time.

This is the comment placed on the file using the FILENOTE
command. Note that it is preceded with a colon (:).

Options available:

TO

KEYS
DATES

NODATES
SINCE <date>

UPTO <date>
P<pat>
S<str>
QUICK

This specifies the file (or device) to output the file listing to. If
omitted, the output goes to the current CLI window.

Displays the block number of each file header or directory.

Displays dates in the form DD-MMM-YY (the default unless
you use QUICK).

Does not display date and time information.

Displays only files last updated on or after <date>. <date>
can be in the form DD-MMM-YY or a day name in the last
week (for example, MONDAY) or TODAY or YESTERDAY.

Displays only files last updated on or before <date>.
Searches for files whose names match <pat>.
Searches for filenames containing substring <str>.

Just displays the names of files and directories (like the DIR
command).

You can specify the range of filenames displayed in two ways. The simplest
way is to use the S keyword, which restricts the listing to those files containing
the specified substring. To specify a more complicated search expression, use
the P or PAT keyword. This is followed by a pattern that matches as described

below.

A pattern consists of a number of special characters with special meanings,
and any other characters that match them.

The special characters are: “()?%#|

In order to remove the special effect of these characters, preface them with ‘.
Thus ‘? matches ? and ‘* matches ’.

AMIGADOS COMMANDS 71

? Matches any single character.
% Matches the null string.
#<p> Matches zero or more occurrences of the pattern <p>.

<pl><p2> Matches a sequence of pattern <pl> followed by <p2>.
<p1>|<p2> Matches if either pattern <pl> or pattern <p2> match.
0 Groups patterns together.

Thus:

LIST PAT A#BC Matches AC ABC ABBC, and so forth.
LIST PAT A#(B|C)D Matches AD ABD ABCD, and so forth.
LIST PAT A?B Matches AAB ABB ACB, and so forth.
LIST PAT A#7?B Matches AB AXXB AZXQB, and so forth.
LIST PAT?#7? # Matches ?# ?AB# ??##, and so forth
LIST PAT A(B|%)#C Matches A ABC ACCC, and so forth.

LIST PAT #(AB) Matches AB ABAB ABABAB, and so forth.

Examples:
LIST

displays information about all the files and directories contained in the current
directory. For example,

File__1

File 2

File.3

:comment (notice that File.3 has a comment)
File004

LIST work S new

displays information about files in the directory “work’” whose names contain
the text “new”. Note that LIST S produces the response: “Args no good for
key” because there is an “S” directory. LIST “s” will list this directory’s
contents.

LIST work P new#?(x|y)

examines the directory “work”, and displays information about all files that

1 1 7y

start with the letters “new” and that end with either “x”" or “y”.

LIST QUICK TO outfile

72 AMIGADOS USER'S MANUAL

sends just the names, one on each line, to the file “outfile”. You can then edit
the file and insert the command TYPE at the beginning of each line. Then type:

EXECUTE outfile
to display the files.

See also: DATE,DIR, FILENOTE,PROTECT

MAKEDIR

Format: ~ MAKEDIR<dir>

Template: MAKEDIR “/A”

Purpose: To make a new directory.

Specification:

MAKEDIR creates a directory with the name you specify. The command only
creates one directory at a time, so any directories on the path must already
exist. The command fails if the directory or a file of the same name already
exists in the directory above it in the hierarchy.

Examples:
MAKEDIR tests

creates a directory “tests” in the current directory.
MAKEDIR dfl:xyz

creates a directory “xyz” in the root directory of disk “df1”.
MAKEDIR dfl:xyz/abec

creates a directory “abc” in the parent directory “xyz” on disk “dfl”. However,
“xyz’”’ must exist for this command to work.

See also: DELETE

NEWCLI

Format: NEWCLI[<window>>]
Template: NEWCLI “WINDOW”
Purpose: To create a window associated with a new interactive CLI process.

AMIGADOS COMMANDS 73

Specification:

AmigaDOS creates a new CLI window. The new window becomes the cur-
rently selected process. The new window has the same set directory and
prompt string as the one where NEWCLI is executed. Each CLI window is
independent, allowing separate input, output, and program execution.

To connect the keyboard to your new CLI, move the mouse to point the cursor
at the new window, and press the left mouse button (that is, the Selection
Button). You can point at any position on the window when selecting a new CLIL

When you give NEWCLI with no argument, AmigaDOS creates a window of
standard size and position. To change the size of the window, move the mouse
to point the cursor at the bottom right corner (sizing Gadget), and press the
Selection Button. You can then change the window size. To change the position
of the window, move the mouse to the Drag Bar, press the left mouse button
and move the mouse to where you want the window.

To customize a CLI window, you can give an exact position and size or even
a new title on the title bar. The “window” syntax to do this is as follows:

CON:x/y/width/height/title

e rr

where “CON:” denotes a console window, “x” and “y” are the coordinates
describing the window’s position, “width” and “height” are the size of the
window, and “title” is the string you want on the title bar. You need not specify
a title string as it is optional, but you must give the final slash (/). All
dimensions are in screen pixels.

Examples:
NEWCLI

creates a new CLI process and makes it the current CLI.
NEWCLI CON:10/30/300/100/myCLI

creates a new CLI at the position 10,30, of size 300 X 100 pixels, with the title
IlmyCLIII' .

NEWCLI “CON:20/15/300/100/my own CLI”

Double quotes allow the title to have spaces. For further information on the
console device, CON:, see Section 1.3.6, Understanding Device Names.

Note: Unlike a background process created with the RUN command, a
NEWCLI process hangs around after you have created it.

See also: ENDCLI, RUN

74 AMIGADOS USER'S MANUAL

PROMPT

Format: ~ PROMPT<prompt>

Template: PROMPT “PROMPT”

Purpose: To change the prompt in the current CLI

Specification:

If you do not give a parameter, then AmigoDOS resets the prompt to the
standard string (“>""). Otherwise, the prompt is set to the string you supply.
AmigaDOS also accepts one special character combination (%N). This is dem-
onstrated in the example below.

Examples:
PROMPT
resets the current prompt to “/>".

PROMPT “%N> ”

resets the current prompt to “n>", where n is the current process number.
AmigaDOS interprets the special character combination %N as the process
number.

PROTECT

Format: PROTECT[FILE]<filename>[FLAGS<status>]
Template: PROTECT”FILE,FLAGS/K”

Purpose: To set a file’s protection status.

Specification:

PROTECT takes a file and sets its protection status.

The keyword FLAGS takes four options: read (r), write (w), delete (d), and
execute (e). To specify these options you type an r, w, d, or e after the name of
the file. If you omit an option, PROTECT assumes that you do not require it.
For instance, if you give all the options except d, PROTECT ensures that you
cannot delete the file. Read, write, and delete can refer to any kind of file.
AmigaDOS only pays attention to the delete (d) flag in the current release.
Users and user programs, however, can set and test these flags if they wish.

Examples:

PROTECT progl FLAGS r

AMIGADOS COMMANDS 75

sets the protection status of program 1 as read only.
PROTECT proga rwd
sets the protection of program 2 as read/write/delete.

See also: LIST

QUIT

Format: QUIT[<returncode>]

Template: QUIT “RC”

Purpose: To exit from a command sequence with a given error code.
Specification:

QUIT reads through the command file and then stops with a return code. The
default return code is zero.

Examples:
QUIT
exits the current command sequence.

FAILAT 30
IF ERROR
QUIT 20
ENDIF

If the last command was in error, this terminates the command sequence
with return code 20.

For more on command sequences, see the specification for the EXECUTE
command earlier in this chapter.

See also: EXECUTE,IF,LAB,SKIP

RELABEL

Format: RELABEL[DRIVE]<drive>[NAME]<name>
Template: RELABEL “DRIVE/A,NAME/A"”
Purpose: To change the volume name of a disk.

76 AMIGADOS USER’S MANUAL

Specification:
RELABEL changes the volume name of a disk to the <name> you specify.
Volume names are set initially when you format a disk.

Examples:
RELABEL dfl: “My other disk”

See also: FORMAT

RENAME

Format: ~ RENAME[FROM]<name>[TO|AS]<name>

Template: RENAME “FROM/A,TO = AS/A”

Purpose: To rename a file or directory.

Specification:

RENAME renames the FROM file with the specified TO name. FROM and TO
must be filenames on the same disk. The FROM name may refer to a file or to a
directory. If the filename refers to a directory, RENAME leaves the contents of
the directory unchanged (that is, the directories and files within that directory
keep the same contents and names).

Only the name of the directory is changed when you use RENAME. If you
rename a directory, or if you use RENAME to give a file another directory
name (for example, rename :bill/letter as :mary/letter), AmigaDOS changes the
position of the directory, or file, in the filing system hierarchy. Using RENAME
is like changing the title of a file and then moving it to another section or
drawer in the filing cabinet. Some other systems describe the action as “mov-
ing” a file or directory.

The RENAME command will not execute if the only change is the “case” of
one or more letters. For example,

RENAME fox to Fox

does not work.

Note: If you already have a file with exactly the same name as the TO file,
RENAME won’t work. This should stop you from overwriting your files by
accident.

Examples:

RENAME work/progl AS :arthur/example

AMIGADOS COMMANDS 77

renames the file “work/progl” as the file “arthur/example”. The root directory
must contain “‘arthur” for this command to work.

RUN wwwa? 45 C/ 7 2728
Frs At bveritliect.

Format: RUN <command> v
Template: RUN command + command.
Purposc: To execute commands as background processes.
Specification:
RUN creates a noninteractive Command Line Interface (CLI) process and gives
it the rest of the command line as input. The background CLI executes the
commands and then deletes itself.

The new CLI has the same set directories and command stack size as the CLI
where you called RUN.

To separate commands, type a plug sign (+) and press RETURN. RUN
interprets the next line after a + (RETURN) as a continuation of the same
command line. Thus, you can make up a single command line of several
physical lines that each end with a plus sign.

RUN displays the process number of the newly created process.

Examples:

RUN COPY :t/0 PRT: +
DELETE :t/0+
ECHO “Printing finished”

prints the file “:t/0” by copying it to the line printer device, deletes it, then
displays the given message. :

RUN EXECUTE comseq

executes in the background all the commands in the file “comseq”.

SEARCH

Format: SEARCH[FROM]<name>|<pat>[SEARCH]<string> [ALL]
Template: SEARCH “FROM,SEARCH/A,ALL/S”

Purpose: To look for a text string you specify in all the files in a directory.
Specification:

SEARCH looks through all the files in the specified directory, and any files in
subdirectories if you specify ALL. SEARCH displays any line that contains the

78 AMIGADOS USER’'S MANUAL

text you specified as SEARCH. It also displays the name of the file currently
being searched.

You can also replace the directory FROM with a pattern. (See the command
LIST for a full description of patterns.) If you use a pattern, SEARCH only
looks through files that match the specified pattern. The name may also
contain directories specified as a pattern.

AmigaDOS looks for either upper or lower case of the search string. Note
that you must place quotation marks around any text containing a space.

As usual, to abandon the command, press CTRL-C, the attention flag. To
abandon the search of the current file and continue on to the next file, if any,
press CTRL-D.

Examples:
SEARCH SEARCH vflag

searches through the files in the current directory looking for the text “vflag”.
SEARCH df0: “Happy day” ALL

looks for files containing the text “Happy day” on the entire disk “df0:”.
SEARCH test-#? vflag

looks for the text “vflag” in all files in the current directory starting with “test-".

SKIP

Format: ~ SKIP <label>

Template: SKIP “LABEL”

Purpose: To perform a jump in a command sequence.

Specification:

You use SKIP in conjunction with LAB. (See LAB for details.) SKIP reads
through the command file looking for a label you defined with LAB, without
executing any commands.

You can use SKIP either with or without a label; without one, it finds the
next unnamed LAB command. With one, it attempts to find a LAB defining a
label, as specified. LAB must be the first item on a line of the file. If SKIP does
not find the label you specified, the sequence terminates and AmigaDOS
displays the following message:

label “<label>" not found by Skip

AMIGADOS COMMANDS 79

SKIP only jumps forward in the command sequence.
Examples:
SKIP
skips to the next LAB command without a name following it.
IF ERROR
SKIP errlab
ENDIF

If the last command stopped with a return code > =20, this searches for the
label “errlab” later in the command file.

FAILAT 100

ASSEM text

IF ERROR

SKIP ERROR

ENDIF

LINK

SKIP DONE

LAB ERROR

ECHO “Error doing Assem”
LAB DONE

ECHO “Next command please”

See also: EXECUTE,LAB,IE, FAILAT,QUIT

SORT

Format: SORT[FROM]<name>[[TO]<name>][COLSTART<n>]
Template: SORT “FROM/A,TO/A,COLSTART/K”
Purpose: To sort simple files.
Specification:
This command is a very simple sort package. You can use SORT to sort files
although it isn’t fast for large files, and it cannot sort files that don’t fit into
memory.

You specify the source as FROM, and the sorted result goes to the file TO.
SORT assumes that FROM is a normal text file where each line is separated

80 AMIGADOS USER'S MANUAL

with a carriage return. Each line in the file is sorted into increasing alphabetic
order without distinguishing between upper and lower cases.

To alter this in a very limited way, use the COLSTART keyword to specify
the first column where the comparison is to take place. SORT then compares
the characters on the line from the specified starting position to the end; if the
lines still match after this, then the remaining columns from the first to just
before the column specified as COLSTART are included in the comparison.

Note: The initial stack size (that is, 4000 bytes) is only suitable for small files
of less than 200 lines or so. If you want to sort larger files, you must use the
STACK command to increase the stack size; how much you should increase the
size is part skill and part guesswork.

WARNING: The Amiga will crash if STACK is too small. If you are not
sure, it is better to overestimate the amount you need.

Examples:
SORT text TO sorted-text

sorts each line of information in “text” alphabetically and places the result in
“sorted-text”’.

SORT index TO sorted-index COLSTART 4

sorts the file “index”, where each record contains the page number in the first
three columns and the index entry on the rest of the line, and puts the output
in “sorted-index”” sorted by the index entry, and matching index entries sorted
by page number.

See also: ><, STACK

STACK

Format: STACK[<n>]

Template: STACK “‘SIZE”

Purpose: To display or set the stack size for commands.

Specification:

When you run a program, it uses a certain amount of stack space. In most
cases, the initial stack size, 4000 bytes, is sufficient, but you can alter it using
the STACK command. To do this, you type STACK followed by the new stack

AMIGADOS COMMANDS 81

value. You specify the value of the stack size in bytes. STACK alone displays
the currently set stack size.

The only command that you would normally need to alter the stack size for
is the SORT command. Recursive commands such as DIR need an increased
stack if you use them on a directory structure more than about six levels deep.

WARNING: The only indication that you have run out of stack is that the
Amiga crashes! If you are not sure, it is better to overestimate the amount
you need.

Examples:
STACK

displays the current stack size.
STACK 8000

sets the stack to 8000 bytes.

See also: RUN, SORT

STATUS

Format: ~ STATUS[<process>][FULL][TCB][SEGS][CLI|ALL]
Template: STATUS “PROCESS, FULL/S, TCB/S,SEGS/S,CLI= ALL/S”
Purpose: To display information about the currently existing CLI processes.
Specification:
STATUS alone lists the numbers of the CLI processes and the program running
in each.

PROCESS specifies a process number and only gives information about that
process. Otherwise, information is displayed about all processes.

FULL = SEGS + TCB + CLI

SEGS displays the names of the sections on the segment list of each process.

TCB displays information about the priority, stacksize, and global vector size
of each process.

For further details on stack and global vector size, see the AmigaDOS
Technical Reference in this book.

CLI identifies Command Line Interface processes and displays the section
name(s) of the currently loaded command (if any).

82 AMIGADOS USER'S MANUAL

Examples:
STATUS

displays brief information about all processes.
STATUS 4 FULL

displays full information about process 4.

TYPE

Format: TYPE[FROM]<name>[[TO]<name>]|[OPT N|H]

Template: TYPE “FROM/A,TO,OPT/K”

Purpose: To type a text file or to type a file out as hexadecimal numbers.
Specification:

TO indicates the output file that you specify; if you omit this, output is to the
current output stream, which means, in most cases, that the output goes to the
current window.

Tabs that you have given in the file are expanded. However, tabs are not
treated as special by TYPE; the console driver processes them. To interrupt
output, press CTRL-C. To suspend output, press the space bar or type any
other character. To resume output, press RETURN or CTRL-X.

OPT specifies an option to TYPE. The first option to TYPE is “‘n”, which
includes line numbers in the output.

The second option you can give TYPE is “h.” Use the “h” option to write out
each word of the FROM file as a hex number.

Examples:
TYPE work/prog

displays the file “work/prog”.
TYPE work/prog OPT n

displays the file “work/prog” with line numbers.
TYPE obj/prog OPT h

displays the code stored in “obj/prog” in hexadecimal.

AMIGADOS COMMANDS 83

WAIT

Format: ~ WAIT <n>[SEC|SECS][MIN|MINS][UNTIL <time>]
Template: 'WAIT “,SEC = SECS/S,MIN = MINS/S,UNTIL/K”
Purpose: To wait for the specified time.
Specification:
You can use WAIT in command sequences or after RUN to wait for a certain
period, or to wait until a certain time of day. Unless you specify otherwise, the
waiting time is one second.

The parameter should be a number, specifying the number of seconds (or
minutes, if MINS is given) to wait.

Use the keyword UNTIL to wait until a specific time of day, given in the
format HH:MM.

Examples:
WAIT
waits 1 second.
WAIT 10 MINS
waits 10 minutes.
WAIT UNTIL 21:15

waits until quarter past nine at night.

WHY

Format: ~ WHY

Template: WHY

Purpose: To explain why the previous command failed.

Specification:

Usually when a command fails the screen displays a brief message that some-
thing went wrong. This typically includes the name of the file (if that was the
problem), but does not go into any more detail. For example, the command

COPY fred TO *

might fail and display the message

84 AMIGADOS USER’S MANUAL

Can’t open fred

This could happen for a number of reasons—for example, “fred” might already
be a directory, or there might not be enough space on the disk to open the file,
or it might be a read-only disk. COPY makes no distinction between these
cases, because usually the user knows what is wrong. However, immediately
after you come across a command that has failed, you can type WHY and press
RETURN to display a much fuller message, describing in detail what went
wrong.

Examples:

TYPE DFOQO:

can’t open DFO:

WHY

Last command failed because object not of required type

WHY gives you a hint about why your command failed. TYPE DFO: failed
because AmigaDOS won't let you type a device.

See also: FAULT

2.2 AmigaDOS Developer’s Commands

ALINK

Format: ALINK[[FROM|ROOT]<filename>[,<filename>*| + <filename*]]
[TO <name>][WITH <name>][LIBRARY|LIB <name>] [MAP
<map>][XREF <name>][WIDTH <n>]

Template: ALINK “FROM=ROOT,TO/K,WITH/K,VER/K,LIBRARY =LIB/K,
MAP/K,XREF/K,WIDTH/K"”

Purpose: To link together sections of code into an executable file.

Specification:

ALINK instructs AmigaDOS to link files together. It also handles auto-

matic library references and builds overlay files. The output from ALINK

is a file loaded by the loader and run under the overlay supervisor, if
required.

For details and a full specification of the ALINK command, see Chapter 4 of
the AmigaDOS Developer’s Manual in this book.

AMIGADOS COMMANDS 85

Examples:
ALINK a+Db-+c TO output

links the files “a”,”b”, and “c”’, producing an output file “output”.

ASSEM

Format: ~ ASSEM[PROG|FROM]<prog>[-O <code>][-V <ver>][-L <listing>]
[-E] [-C|OPT <opt>][-I <dirlist>]

Template: ASSEM"“PROG=FROM/A,-O/K,-V/K,-L/K,-H/K,-E/K,-C= OPT/K,-I/K”

Purpose: To assemble a program in MC68000 assembly language.

Specification:

ASSEM assembles programs in MC68000 assembly language. See Chapter 3 of

the AmigaDOS Developer’s Manual in this book for details.

PROG is the source file.

-O is the object file (that is, binary output from the assembler).

-V is the file for messages. (Unless you specify -V, messages go to the
terminal.)

-L is the listing file.

-C specifies options to the assembler.

-H is a header file which can be read as if inserted at the front of the
source (like INCLUDE in the source itself).

-1 sets up a list of directories to be searched for included files.

-E is the file that receives the “equates” directive (EQU) assignments

from your source. You use -E to generate a header file containing
these directives.

The options you can specify with OPT or -C are as follows:
S produce a symbol table dump as part of the object file.
X produce a cross-reference file.
W<size> set workspace to <size>.
Examples:
ASSEM prog.asm TO prog.obj
assembles the source program in “prog.asm”, placing the result in the file

“prog.obi”. It writes any error messages to the terminal, but does not produce
any assembly listing.

86 AMIGADOS USER’S MANUAL

ASSEM prog.asm TO prog.obj -h slib -1 prog-list

assembles the same program to the same output, but includes the file “’slib”’ in
the assembly, and places an assembly listing in the file “prog-list”.

ASSEM foo.asm -0 foo.0bj opt w8000

assembles a very small program.

DOWNLOAD

Template: DOWNLOAD “FROM/A, TO/A”
Purpose: To download programs to the Amiga.
Specification:
The command DOWNLOAD downloads programs written on another com-
puter (for example, a Sun) to the Amiga.

To use DOWNLOAD, you must have a BillBoard. Then, to download your
linked load file from the Sun to the Amiga, you type on the Sun:

binload -p &
(this only needs to be done once), then type on the Amiga:
download <sun filename> <amiga filename>

(Before you boot your Sun, you must make sure that both the BillBoard and
Amiga are already on and powered up, otherwise they won’t be recognized by
the Sun.) The <sun filename> by convention should end with .l1d. Once
you’'ve done this, to run the program, you type the <amiga filename>.

Note that the command “binload” is not an AmigaDOS command. You use
binload on a Sun to load files in binary for downloading to your Amiga.

Note that DOWNLOAD always accesses files on the Sun relative to the
directory in which binload was started. If you cannot remember the directory
in which binload was started, you must specify the full name. To stop binload
on the Sun, you can do a “ps’”” and then a “kill” on its PID. Note that the soft
reset of the computer tells binload to write a message to its standard output
(the default being the window where it started). If DOWNLOAD hangs, press
CTRL-C to kill it.

Chapter 1 of the AmigaDOS Developer’s Manual in this book describes in detail
how to download programs from an IBM PC to Amiga, from the Sun to the
Amiga, and even gives some hints on how to download from unsupported
computers.

AMIGADOS COMMANDS 87

Examples:

binload -p &
download test.ld test.

or
download /usr/fred/DOS/test.1d test
then type the following;:
test

These commands download the specified Sun filenames to the Amiga
filenames.

READ

Template: READ “TO/A,SERIAL/S”
Purpose: READ reads data from the parallel port or serial line and stores it in
a file.

Specification:
The command READ listens to the parallel port and expects a stream of
hexadecimal characters. If you press the SERIAL switch, READ listens, instead,
to the serial line. Each hex pair is stored as a byte in memory. READ recognizes
Q as the hex stream terminator. READ also recognizes the ASCII digits 0-9 and
the capital letters A through F. READ ignores spaces, new lines, and tabs. You
must send an ASCII hex digit for every nibble, and you must have an even
number of nibbles. When the stream is complete, READ writes the bytes from
memory to the disk file you specified.

Note: You can use this command to transfer binary or text files.

WARNING 1: Be careful when READing to the same file twice. READ
overwrites the original contents the second time.

WARNING 2: You may lose characters if you use high baud rates with
the serial connection.

Examples:

READ TO dfO:new

)

88

AMIGADOS USER’'S MANUAL

READ:s to the file “df0:new” from the parallel port.

READ new SERIAL

READ:s to the file “new’”’ from the serial line.

2.3 AmigaDOS Commands Quick Reference Card

User’s Commands N

File Utilities
<>
COPY

DELETE
DIR

ED

EDIT
FILENOTE

JOIN
LIST

MAKEDIR
PROTECT
RENAME
SEARCH
SORT
TYPE

CLI Control
BREAK
CD
ENDCLI
NEWCLI
PROMPT
RUN
STACK

comment character.

direct command input and output respectively.

copies one file to another or copies all the files from one
directory to another.

deletes up to 10 files or directories.

shows filenames in a directory.

enters a screen editor for text files.

enters a line by line editor.

attaches a note with a maximum of 80 characters to a specified
file.

concatenates up to 15 files to form a new file.

examines and displays detailed information about a file or
directory.

creates a directory with a specified name.

sets a file’s protection status.

renames a file or directory.

looks for a specified text string in all the files of a directory.
sorts simple files.

types a file to the screen that you can optionally specify as
text or hex.

sets attention flags in a given process.

sets a current directory and/or drive.

ends an interactive CLI process.

creates a new interactive CLI process.
changes the prompt in the current CLL
executes commands as background processes.
displays or sets the stack size for commands.

AMIGADOS COMMANDS 89

STATUS

WHY

displays information about the CLI processes currently in
existence.
explains why a previous command failed.

Command Sequence Control

ECHO
EXECUTE
FAILAT

IF
LAB
QUIT
SKIP
WAIT

displays the message specified in a command argument.
executes a file of commands.

fails a command sequence if a program returns an error code
greater than or equal to this number.

tests specified actions within a command sequence.

defines a label (see SKIP).

exits from a command sequence with a given error code.
jumps forward to LAB in a command sequence (see LAB).
waits for, or until, a specified time.

System and Storage Management

ASSIGN
DATE
DISKCOPY
FAULT

FORMAT
INFO

INSTALL
RELABEL

assigns a logical device name to a filing system directory.
displays or sets the system date and time.

copies the contents of one entire floppy disk to another.
displays messages corresponding to supplied fault or error
codes.

formats and initializes a new 3Vz-inch floppy disk.

gives information about the filing system.

makes a formatted disk bootable.

changes the volume name of a disk.

Developer’s Commands

Development System

ALINK
ASSEM
DOWNLOAD
READ

links sections of code into a file for execution (see JOIN).
assembles MC68000 language.

downloads programs to the Amiga.

reads information from the parallel port or serial line and
stores it in a file.

Chapter 3
ED—The Screen Editor

This chapter describes how to use the screen editor ED. You can use this
program to alter or create text files.

3.1 Introducing ED

3.2 Immediate Commands
3.2.1 Cursor Control

3.2.2 [Inserting Text

3.2.3 Deleting Text

3.2.4 Scrolling

3.2.5 Repeating Commands

3.3 Extended Commands
3.3.1 Program Control

3.3.2 Block Control

3.3.3 Moving the Current Cursor Position
3.3.4 Searching and Exchanging
3.3.5 Altering Text

3.3.6 Repeating Commands
Quick Reference Card

3.1 Introducing ED

You can use the editor ED to create a new file or to alter an existing one. You dis-
play text on the screen, and you can scroll it vertically or horizontally, as required.
ED accepts the following template:

ED “FROM/A,SIZE/K”
For example, to call ED, you type

ED fred

ED—THE SCREEN EDITOR 91

ED makes an attempt to open the file you have specified as “fred” (that is, the
FROM file), and if this succeeds, then ED reads the file into memory and
displays the first lines on the screen. Otherwise, ED provides a blank screen,
ready for the addition of new information. To alter the text buffer that ED uses
to hold the file, you specify a suitable value after the SIZE keyword, for
example,

ED fred SIZE 45000

The initial size is based on the size of the file you edit, with a minimum of
40,000 bytes.

Note: You cannot edit every kind of file with ED. For example, ED does not
accept source files containing binary code. To edit files such as these, you
should use the editor EDIT.

WARNING: ED always appends a linefeed even if the file does not end
with one.

When ED is running, the bottom line of the screen is a message area and
command line. Error messages appear here and remain until you give another
ED command.

ED commands fall into two categories:

* immediate commands
* extended commands

You use immediate commands in immediate mode; you use extended
commands in extended mode. ED is already in immediate mode when you
start editing. To enter extended mode, you press the ESC key. Then, after
ED has executed the command line, it returns automatically to immediate
mode.

In immediate mode, ED executes commands right .away. You specify an
immediate command with a single key or control key combination. To indicate
a control key combination, you press and hold down the CTRL key while you
type the given letter, so that CTRL-M, for example, means hold down CTRL
while you type M.

In extended mode, anything you type appears on the command line. ED
does not execute commands until you finish the command line. You may type
a number of extended commands on a single command line. You may also
group any commands together and even get ED to repeat them automatically.
Most immediate commands have a matching extended version.

92 AMIGADOS USER’S MANUAL

ED attempts to keep the screen up to date. However, if you enter a further
command while it is attempting to redraw the display, ED executes the com-
mand at once and updates the display when there is time. The current line is
always displayed first and is always up to date.

3.2 Immediate Commands

This section describes the type of commands that ED executes immediately.
Immediate commands deal with the following:

* cursor control

« text insertion

+ text deletion

text scrolling

* repetition of commands

3.2.1 Cursor Control

To move the cursor one position in any direction, you press the appropriate
cursor control key. If the cursor is on the right hand edge of the screen, ED
scrolls the text to the left to make the rest of the text visible. ED scrolls
vertically a line at a time and horizontally ten characters at a time. You cannot
move the cursor off the top or bottom of the file, or off the left hand edge of
the text.

CTRL-], that is, CTRL and the square closing bracket “]” takes the cursor to
the right hand edge of the current line unless the cursor is already there. When
the cursor is already at the right hand edge, CTRL-] moves it back to the left
hand edge of the line. The text is scrolled horizontally, if required. In a similar
fashion, CTRL-E places the cursor at the start of the first line on the screen
unless the cursor is already there. If the cursor is already there, CTRL-E places
it at the end of the last line on the screen.

CTRL-T takes the cursor to the start of the next word. CTRL-R takes the
cursor to the space following the previous word. In these two cases, the text is
scrolled vertically or horizontally, as required.

The TAB key moves the cursor to the next tab position, which is a multiple
of the tab setting (initially 3). It does NOT insert TAB characters into the file.

3.2.2 Inserting Text

While in immediate mode, ED is also in INSERT mode so any ordinary
characters you type will be inserted at the current cursor position. ED has no
type-over mode. To replace a word or line, you must delete the desired

ED—THE SCREEN EDITOR 93

contents and insert new information in its place. Any letter that you type in
immediate mode appears at the current cursor position unless the line is too
long (there is a maximum of 255 characters in a line). If you try to make a line
longer than the maximum limit, ED refuses to add another character and
displays the following message:

Line too long

However, on shorter lines, ED moves any characters to the right of the
cursor to make room for the new text. If the line exceeds the size of the screen,
the left hand end of the line disappears from view. Then ED redisplays the end
of the line by scrolling the text horizontally. If you move the cursor beyond the
end of the line, for example, with the TAB or cursor control keys, ED inserts
spaces between the end of the line and any new character you insert.

To split the current line at the cursor and generate a new line, press RE-
TURN. If the cursor is at the end of a line, ED creates a new blank line after the
current one. Alternatively, you press CTRL-A to generate a blank line after the
current one, with no split of the current line taking place. In either case, the
cursor appears on the new line at the position indicated by the left margin
(initially, column one).

To ensure that ED gives a carriage return automatically at a certain position
on the screen, you can set up a right margin. Once you have done this,
whenever you type a line that exceeds that margin, ED ends the line before the
last word and moves the word and the cursor down onto a new line. This is
called “word wrap.” (Note that if you have a line with no spaces, ED won’t
know where to break the “word” and the automatic margin cannot work
properly.) In detail, if you type a character and the cursor is at the end of the
line and at the right margin position, then ED automatically generates a new
line. Unless the character you typed was a space, ED moves down the half
completed word at the end of the line to the newly generated line. However, if
you insert some text when the cursor is NOT at the end of a line (that is, with
text already to the right of the cursor), then setting a right margin does not
work. Initially, the right margin is set up at column 79. You can turn off, or
“disable”, the right margin with the EX command. (For further details on
setting margins, see Section 3.3.1, “Program Control”.)

If you type some text in the wrong case (for example, in lower case instead of
upper case), you can correct it with CTRL-F, To do this, you move the cursor to
point at the letter you want to change and then press CTRL-F. If the letter is in
lower case, CTRL-F flips the letter into upper case. On the other hand, if the
letter is in upper case, CTRL-F flips it into lower case. However, if the cursor
points at something that is not a letter (for example, a space or symbol),
CTRL-F does nothing to it.

CTRL-F not only flips letters’ cases but it also moves the cursor one place to

9% AMIGADOS USER'S MANUAL

the right (and it moves the cursor even if there is no case to flip). So that, after
you have changed the case of a letter with CTRL-F, the cursor moves right to
point at the next character. If the next character is a letter, you can press
CTRL-F again to change its case; you can then repeat the command until you
have changed all the letters on the line. (Note that if you continue to press
CTRL-F after the last letter on the line, the cursor keeps moving right even
though there is nothing left to change.) For example, if you had the line

The Walrus and the Carpenter were walking hand in hand
and you kept CTRL-F pressed down, the line would become
the walrus and the carpenter were walking hand in hand
On the other hand, the following line:
IF <file> <= X
becomes
if <FILE> <= X

where the letters change case and the symbols remain the same.

3.2.3 Deleting Text

The BACKSPACE key deletes the character to the left of the cursor and moves
the cursor one position left unless it is at the beginning of a line. ED scrolls the
text, if required. The DEL key deletes the character at the current cursor
position without moving the cursor. As with any deletion, characters remain-
ing on the line shift back, and text that was invisible beyond the right hand
edge of the screen becomes visible.

The action of CTRL-O depends on the character at the cursor. If this charac-
ter is a space, then CTRL-O deletes all spaces up to the next nonspace
character on the line. Otherwise, it deletes characters from the cursor, and
moves text left, until a space occurs.

CTRL-Y deletes all characters from the cursor to the end of the line.

CTRL-B deletes the entire current line. You may use extended commands to
delete blocks of text.

ED—THE SCREEN EDITOR 95

3.2.4 Scrolling

Besides vertically scrolling one line at a time by moving the cursor to the edge
of the screen, you can vertically scroll the text 12 lines at a time with the control
keys CTRL-U and CTRL-D.

CTRL-D moves the cursor to previous lines, while scrolling the text down;
CTRL-U scrolls the text up and moves the cursor to lines further on in the file.

CTRL-V refreshes the entire screen, which is useful if another program
besides the editor alters the screen. However, in typical use, messages from
other processes appear in the window behind the editor window.

3.2.5 Repeating Commands

The editor remembers any extended command line you type. To execute this
set of extended commands again at any time, press CTRL-G. In this way, you
can set up a search command as an extended command. If the first occurrence
of a string is not the one you need, press CTRL-G to repeat the search. You can
set up and execute complex sets of editing commands many times.

Note: When you give an extended command as a command group with a
repetition count, ED repeats the commands in the group that number of times
each time you press CTRL-G. See the next section for more details on extended
commands.

3.3 Extended Commands

This section describes the commands available to you in extended mode. These
commands cover:

* program control
* block control

* movement

* searching text

* exchanging text
* altering text

* inserting text

To enter extended command mode, press the ESC key. Subsequent input
then appears on the command line at the bottom of the screen. You can correct
mistakes with BACKSPACE in the normal way. To terminate the command
line, press either ESC or RETURN. If you press ESC, the editor remains in
extended mode after executing the command line. On the other hand, if you
press RETURN, it reverts to immediate mode. To leave the command line

96 AMIGADOS USER'S MANUAL

empty, just press RETURN after pressing ESC to go back to immediate mode.
In this case, ED returns to immediate command mode.

Extended commands consist of one or two letters, with upper and lower case
considered the same. You can give multiple commands on the same command
line by separating them with a semicolon. Commands are sometimes followed
by an argument, such as a number or a string. A string is a sequence of letters
introduced and terminated by a delimiter, which is any character except letters,
numbers, space, semicolon, or brackets. Thus, valid strings might be:

Mhappy/
123 feet!

:Hello!: “%&”

Most immediate commands have a corresponding extended version. See
the Table of Extended Commands at the end of this chapter for a complete
list.

3.3.1 Program Control

This section provides a specification of the program control commands X
(eXit), Q (Quit), SA (SAve), U (Undo), SH (SHow), ST (Set Tab), SL and SR
(Set Left and Set Right), and EX (EXtend).

To instruct the editor to exit, you use the command X. After you have given
the exit command, ED writes out the text it is holding in memory to the
output, or destination file and then terminates. If you look at this file, you can
see that all the changes you made are there.

ED also writes a temporary backup to :T/ED-BACKUP. This backup file
remains until you exit from ED again, at which time, ED overwrites the file
with a new backup.

To get out of the editor without keeping any changes, you use the Q
command. When you use Q, ED terminates immediately without writing to the
buffer and discards any changes you have made. Because of this, if you have
altered the contents of the file, ED asks you to confirm that you really want to
quit.

A further command lets you to take a “snapshot” copy of the file without
coming out of ED. This is the SA command. SA saves the text to a named file
or, in the absence of a named file, to the current file. For example,

SA !:doc/savedtext!
or

SA

ED—THE SCREEN EDITOR 97

SA is particularly useful in geographical areas subject to power failure or
surge.

Hint: SA followed by Q is equivalent to the X command.

If you make any alterations between the SA and the Q commands, the
following message appears:

Edits will be lost—type Y to confirm:

If you have made no alterations, ED quits immediately with the contents of
your source file unchanged. SA is also useful because it allows you to specify a
filename other than the current one. It is therefore possible to make copies at
different stages and place them in different files or directories.

To undo the last change, you use the U command. The editor makes a copy
of the line the cursor is on, and then it modifies this copy whenever you add or
delete characters. ED puts the changed copy back into the file when you move
the cursor off the current line (either by cursor control, or by deleting or
inserting'a line). ED also replaces the copy when it performs any scrolling
either vertically or horizontally. The U command discards the changed copy
and uses the old version of the current line instead.

WARNING: ED does not undo a line deletion. Once you have moved
from the current line, the U command cannot fix the mess you have got
yourself into.

To show the current state of the editor, you use the SH command. The
screen displays information such as the value of tab stops, current margins,
block marks, and the name of the file being edited.

Tabs are initially set at every three columns. To change the current setting of
tabs, you use the ST command followed by a number ‘n”, which sets tabs at
every “n” column.

To set the left margin and right margin, you use the SL and SR commands,
again followed by a number indicating the column position. The left margin
should not be set beyond the width of the screen.

To extend margins, you use the EX command. Once you have given EX, ED
takes no account of the right margin on the current line. Once you move the
cursor from the current line, ED turns the margins on again.

3.3.2 Block Control

To move, insert, or delete text, you use the block control commands described
in this section.
You can identify a block of text with the BS (Block Start) and BE (Block End)

98 AMIGADOS USER’'S MANUAL

commands. To do this, move the cursor to anywhere on the first line that
you want in the block and give the BS command. Then, move the cursor to the
last line that you want in the block, using the cursor control commands or a
search command, and give the BE command to mark the end of the block.

Note: Once you have defined a block with BS and BE, if you make ANY
change to the text, the start and end of the block become undefined once more.
The only exception to this is if you use IB (Insert Block).

To identify one line as the current block, move to the line you want, press
ESC, and type:

BS;BE

The current line then becomes the current block.

Note: You cannot start or finish a block in the middle of a line. To do this,
you must first split the line by pressing RETURN.

Once you have identified a block, you can move a copy of it into another part
of the file with the IB (Insert Block) command. When you give the IB com-
mand, ED inserts a copy of the block immediately after the current line. You
can insert more than one copy of the block, as it remains defined until you
change the text, or delete the block.

To delete a block, you use the DB (Delete Block) command. DB deletes the
block of text you defined with the BS and BE commands. However, when you
have deleted the block, the block start and end values become undefined. This
means that you CANNOT delete a block and then insert a copy of it (DB
followed by IB); however, you can insert a copy of the block and then delete
the block (IB followed by DB).

You can also use block marks to remember a place in a file. The SB (Show
Block) command resets the screen window on the file so that the first line in
the block is at the top of the screen.

To write a block to another file, you use the WB command (Write Block).
This command takes a string that represents a filename. For example,

WB l:doc/example!

writes the contents of the block to the file “example” in the directory “:doc”.
Remember: if you use the filename-divider slash (/) to separate directories and
files, you should not use slash as a delimiter. ED then creates a file with the
name that you specified, possibly destroying a previous file with that name,
and finally writes the buffer to it.

To insert a file into the current file, you use the IF command (Insert File). ED
reads into memory the file with the name you gave as the argument string to
IF, at the point immediately following the current line. For example,

ED—THE SCREEN EDITOR 99

IF l:doc/example!

inserts the file :doc/example into the current file beginning immediately after
the current line.

3.3.3 Moving the Current Cursor Position

The command T moves the cursor to the top of the file, so that the first line in
the file is the first line on the screen. The B command moves the cursor to the
bottom of the file, so that the last line in the file is the bottom line on the
screen.

The commands N and P move the cursor to the start of the next line and
previous line, respectively. The commands CL and CR move the cursor one
place to the left or one place to the right, while CE places the cursor at the end
of the current line, and CS places it at the start.

The command M moves the cursor to a specific line. To move, you type M
followed by the line number of the line you want as the new current line. For
example,

M 503

moves the cursor to the five hundred and third line in the file. The M
command is a quick way of reaching a known position in your file. You can, for
instance, move to the correct line in your file by giving a repeat count to the N
command, but it is much slower.

3.3.4 Searching and Exchanging

Alternatively you can move the screen window to a particular context with the
command F (Find) followed by a string that represents the text to be located.
The search starts at one place beyond the current cursor position and continues
forward through the file. If the string is found, the cursor appears at the start
of the located string. The string must be in quotes (or other delimiters /", “.”,
“1”, and so on). In order for a match to occur the strings must be of the same
case, unless the UC command is used (see below).

To search backward through the text, you use the command BF (Backward
Find) in the same way as F. BF finds the last occurrence of the string before the
current cursor position. (That is, BF looks for the string to the left of the cursor
and then through all the lines back to the beginning of the file.) To find the
earliest occurrence, you use T (Top-of-file) followed by F. To find the last
occurrence, you use B (Bottom-of-file) followed by BF.

The E (Exchange) command takes two strings separated with delimiter char-
acters and exchanges the first string for the last. So, for example,

100 AMIGADOS USER’'S MANUAL

E /wombat/zebra/

would change the next occurrence of the text “wombat” to “‘zebra”. The editor
starts searching for the first string at the current cursor position and continues
through the file. After the exchange is completed, the cursor moves to the end
of the exchanged text.

You can specify empty strings by typing two delimiters with nothing between
them. If the first, or “’search”, string is empty, the editor inserts the second
string at the current cursor position. If the second string is empty, the next
occurrence of the search string is exchanged for nothing (that is, the search
string is deleted).

Note: ED ignores margin settings while you are exchanging text.

The EQ command (Exchange and Query) is a variant on the E command.
When you use EQ, ED asks you whether you want the exchange to take place.
This is useful when you want the exchange to take place in some circum-
stances, but not in others. For example, after typing

EQ /wombat/zebra/
the following message
Exchange?

appears on the command line. If you respond with an N, then the cursor
moves past the search string; otherwise, if you type Y, the change takes place
as normal. You usually only give EQ in repeated groups.

The search and exchange commands usually make a distinction between
upper and lower case while making the search. To tell all subsequent searches
not to make any distinction between upper and lower case, you use the UC
command. Once you have given UC, the search string “wombat” matches
“Wombat”, “WOMBAT"”, “WoMbALt”, and so on. To have ED distinguish
between upper and lower case again, you use LC.

3.3.5 Altering Text

You cannot use the E command to insert a new line into the text. You use the I
and A commands instead. Follow the I command (Insert before) with a string
that you want to make into a new line. ED inserts this new line before the
current line. For example,

I /Insert this BEFORE the current line/

ED—THE SCREEN EDITOR 101

inserts the string “Insert this BEFORE the current line” as a new, separate line
Before the line containing the cursor. You use the A command (insert After) in
the same way except that ED inserts the new line after the current line. That is,

A /Insert this AFTER the current line/

inserts the string “Insert this AFTER the current line”” as a new line After the
line containing the cursor.

To split the current line at the cursor position, you use the S command. S in
extended mode is just like pressing RETURN in immediate mode (see Section
3.2.2 for further details on splitting lines).

The] command joins the next line to the end of the current one.

The D command deletes the current line in the same way as CTRL-B in
immediate mode. The DC command deletes the character above the cursor in
the same way as DEL.

3.3.6 Repeating Commands

To repeat any command a certain number of times, precede it with the desired
number. For example,

4 E /slithy/brillig/

changes the next four occurrences of “‘slithy” to “brillig”. ED verifies the screen
after each command. You use the RP (Repeat) command to repeat a command
until ED returns an error, such as reaching the end of the file. For example,

T; RP E /slithy/brillig/

changes all occurrences of “slithy” to “brillig”. Notice that you need the T
command to ensure that ALL occurrences of “slithy’” are changed, otherwise
only those after the current position are changed.

To execute command groups repeatedly, you can group the commands
together in parentheses. You can also nest command groups within command
groups. For example,

RP (F /bandersnatch/; 3 A/ /)

inserts three blank lines (copies of the null string) after every line containing
“bandersnatch”’. Notice that this command line only works from the cursor to
the end of the file. To apply the command to every line in the file, you should
first move to the top of the file.

Note that some commands are possible, but silly. For example,

102 AMIGADOS USER'S MANUAL

RP SR 60

sets the right margin to 60 ad infinitum. However, to interrupt any sequence of
extended commands, and particularly repeated ones, you type any character
while the commands are taking place. If an error occurs, ED abandons the
command sequence.

Quick Reference Card
Special Key Mappings

Command Action

BACKSPACE Delete character to left of cursor

DEL Delete character at cursor

ESC Enter extended command mode

RETURN Split line at cursor and create a new line

TAB Move cursor right to next tab position (does NOT insert a
TAB character)

<up-arrow> Move cursor up

<down-arrow> Move cursor down

<left-arrow> Move cursor left

<right-arrow> Move cursor right

Immediate Commands

Command Action

CTRL-A Insert line

CTRL-B Delete line

CTRL-D Scroll text down

CTRL-E Move to top or bottom of screen
CTRL-F Flip case

CTRL-G Repeat last extended command line
CIRL-H Delete character left of cursor (BACKSPACE)
CTRL-I Move cursor right to next tab position
CTRL-M RETURN

CTRL-O Delete word or spaces

CTRL-R Cursor to end of previous word
CTRL-T Cursor to start of next word

CTRL-U Scroll text up

CTRL-V Verify screen

CTRL-Y Delete to end of line

ED—THE SCREEN EDITOR 103

CTRL-[
CTRL-]

Escape (enter extended mode)
Cursor to end or start of line

Extended Commands

This is a full list of extended commands including those that are merely
extended versions of immediate commands. In the list, /s/ indicates a string,
/s/t/ indicates two exchange strings, and “n” indicates a number.

Command
A /s/

B

BE

BF /s/
BS

CE

CL

CR

CS

D

DB

DC

E /s/t/
EQ /s/t/
EX
E/s/
I/s/

IB

IF /s/

J
LC

Mn
N

P

Q
RP
S
SA
SB
SH
SL n
SR n

Action

Insert line after current line
Move to bottom of file

Block end at cursor
Backward find

Block start at cursor

Move cursor to end of line
Move cursor one position left
Move cursor one position right
Move cursor to start of line
Delete current line

Delete block

Delete character at cursor
Exchange “s” into “t”
Exchange but query first
Extend right margin

Find string “‘s”

Insert line before current
Insert copy of block

Insert file /s”

Join current line with next
Distinguish between upper and
lower case in searches

Move to line number “‘n”’
Move to start of next line
Move to start of previous line
Quit without saving text
Repeat until error

Split line at cursor

Save text to file

Show block on screen

Show information

Set left margin

Set right margin

104 AMIGADOS USER'S MANUAL

Command Action

STn Set tab distance

T Move to top of file

U Undo changes on current line
ucC Equate U/C and l/c in searches
WB /s/ Wrrite block to file “s”

X Exit, writing text into memory

Chapter 4
EDIT—The Line Editor

This chapter describes in detail how to use the line editor EDIT. The first part
introduces the reader to the editor. The second part gives a complete specifica-
tion of EDIT. There is a quick reference card containing all the EDIT commands
at the end of the chapter.

4.1 Introducing EDIT

4.1.1 Calling EDIT

4.1.2 Using EDIT Commands

4.1.2.1 The Current Line

4.1.2.2 Line Numbers

4.1.2.3 Selecting a Current Line

4.1.2.4 Qualifiers

4.1.2.5 Making Changes to the Current Line
4.1.2.6 Deleting Whole Lines

4.1.2.7 Inserting New Lines

4.1.2.8 Command Repetition

4.1.3 Leaving EDIT

4.1.4 A Combined Example: Pulling It All Together
4.2 A Complete Specification of EDIT
4.2.1 Command Syntax

4.2.1.1 Command Names

4.2.1.2 Arguments

4.2.1.3 Strings

4.2.1.4 Multiple Strings

4.2.1.5 Qualified Strings

4.2.1.6 Search Expressions

4.2.1.7 Numbers

4.2.1.8 Switch Values

4.2.1.9 Command Groups

4.2.1.10 Command Repetition

4.2.2 Processing EDIT

106

AMIGADOS USER'S MANUAL

4.2.2.1
4.2.2.2
4.2.2.3
4224
4.2.2.5
4.2.2.6
4.2.3
4.2.3.1
4.2.3.2
4.2.4
4.2.4.1
4.2.4.2
4.2.5
4251
4.2.5.2
4.2.5.3
4.2.5.4
4.2.6
4.2.6.1
4.2.7
4.2.8
4.2.8.1
4.2.8.2
4.2.8.3
4.2.9
4.2.10
4.2.10.1
4.2.10.2
4.2.10.3
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15

Prompts

The Current Line

Line Numbers

Qualified Strings

Output Processing

End-of-File Handling

Functional Groupings of EDIT Commands
Selection of a Current Line

Line Insertion and Deletion

Line Windows

The Operational Window

Single Character Operations on the Current Line
String Operations on the Current Line
Basic String Operations

The Null String

Pointing Variant

Deleting Parts of the Current Line
Miscellaneous Current Line Commands
Splitting and Joining Lines

Inspecting Parts of the Source: The Type Commands
Control of Command, Input, and Output Files
Command Files

Input Files

Output Files

Loops

Global Operations

Setting Global Changes

Cancelling Global Changes

Suspending Global Changes

Displaying the Program State
Terminating an EDIT Run

Current Line Verification

Miscellaneous Commands

Abandoning Interactive Editing

4.1 Introducing EDIT

EDIT is a text editor that processes sequential files line by line under the
control of editing commands. EDIT moves through the input, or source file,
passing each line (after any possible alterations) to a sequential output file, the
destination file. An EDIT run, therefore, makes a copy of the source file that
contains any changes that you requested with the editing commands.

EDIT—THE LINE EDITOR 107

Although EDIT usually processes the source file in a forward sequential
manner, it has the capability to move backward a limited number of lines.
This is possible because EDIT doesn’t write the lines that have been passed to
the destination file immediately, but holds them instead in an output queue.
The size of this queue depends on the amount of memory available. If you
want to hold more information in memory, you can select the EDIT option, OPT,
described in the next section, to increase the amount.

You can make more than one pass through the text.

The EDIT commands let you

a) change parts of the source,
b) output parts of the source to other destinations, and
¢) insert material from other sources.

4.1.1 Calling EDIT

This section describes the format of the arguments you can give every time you
call the EDIT command. EDIT expects the following arguments:

FROM/A,TO,WITH/K,VER/K,OPT/K

The command template described in Chapter 1 is a method of defining the
syntax for each command. AmigaDOS accepts command arguments according
to the format described in the command template. For example, some argu-
ments are optional, some must appear with a keyword, and others do not need
keywords because they appear only in a specific position. Arguments with a
following /A (like FROM) must appear, but you do not have to type the
keyword. Arguments with just a following /K (such as WITH, VER, and OPT)
are optional, but you must type the keyword to specify them. Arguments
without a following / (TO, for example), are optional. AmigaDOS recognizes
arguments without a following slash (/) by their position alone. If you forget
the syntax for EDIT, type:

EDIT ?

and AmigaDOS displays the full template on the screen. (For more details on
using commands, see Chapters 1 and 2 of this manual.)

Using another method of description, the command syntax for EDIT is as
follows:

[FROM] <file> [[TO] <file>] [WITH <file>] [VER <file>] [OPT Pn|Wn|Pn
Wn]

108 AMIGADOS USER’S MANUAL

The argument FROM represents the source file that you want to edit. The
argument must appear, but the keyword itself is optional. (That is, AmigaDOS
accepts the FROM file by its position.) It does not require you to type the
keyword FROM as well.

The TO file represents the destination file. This is the file where EDIT sends
the output including the editing changes. If you omit the TO argument, EDIT
uses a temporary file that it renames as the FROM file when editing is com-
plete. If you give the EDIT command STOP, this renaming does not take place,
and the original FROM file is untouched.

The WITH keyword represents the file containing the editing commands. If
you omit the WITH argument, EDIT reads from the terminal.

The VER keyword represents the file where EDIT sends error messages and
line verifications. If you omit the VER argument, EDIT uses the terminal.

You can use the OPT keyword to specify options to EDIT. Valid options are
P<n>, which sets the number of previous lines available to the integer <n>,
and W<n>, which sets the maximum line length handled to <n> characters.
Unless you specify otherwise, AmigaDOS sets the options P4A0W120.

You can use OPT to increase, or decrease, the size of available memory.
EDIT uses P*W (that is, the number of previous lines multiplied by the line
width) to determine the available memory. To change the memory size, adjust
the P and W numbers. P50 allocates more memory than usual; P30 allocates
less memory than usual.

Here are some examples of how you can call EDIT:

EDIT programl TO programl__new WITH edit__commands

EDIT programl OPT P50WR40

EDIT programl VER ver__file

Note: Unlike ED, you cannot use EDIT to create a new file. If you attempt to

create a new file, AmigaDOS returns an error because it cannot find the new
file in the current directory.

4.1.2 Using EDIT Commands

This section introduces some of the basic EDIT commands omitting many
of the advanced features. A complete description of the command syntax
and of all commands appears in Section 4.2, “A Complete Specification of
EDIT.”

EDIT—THE LINE EDITOR 109

4.1.2.1 The Current Line

As EDIT reads lines from the source and writes them to the destination, the
line that it has “in its hand” at any time is called the current line. EDIT makes
all the textual changes to the current line. EDIT always inserts new lines before
the current line. When you first enter EDIT, the current line is the first line of
the source.

4.1.2.2 Line Numbers

EDIT assigns each line in the source a unique line number. This line number is
not part of the information stored in the file, but EDIT computes it by counting
the lines as they are read. When you're using EDIT, you can refer to a specific
line by using its line number. A line that has been read retains its original line
number all the time it is in main memory, even when you delete lines before or
after it, or insert some extra lines. The line numbers remain unchanged until
you rewind the file, or until you renumber the lines with the = command.
EDIT assigns the line numbers each time you enter the file. The line numbers,
therefore, may not be the same when you re-enter.

4.1.2.3 Selecting a Current Line
To select a current line in EDIT, you can use one of three methods:

a) counting lines,
b) specifying the context, or
¢) specifying the line number.
These three methods are described below.
By Line Counting
The N and P commands allow you to move to the next or previous lines. If

you give a number before the N or P command, you can move that number of
lines forward or backward. To move forward to the next line, type:

N

For any EDIT command, you can type either upper or lower case letters.
To move four lines forward, type:

4N

to make the fourth line from the current line your new current line.
To move back to a line above the current line, type:

P

110 AMIGADOS USER'S MANUAL

The P command also takes a number. For example, type:
4P

This makes the fourth line above the current line your new current line. It is
only possible to go back to previous lines that EDIT has not yet written to the
output. EDIT usually lets you go back 40 lines. To be able to move back more
than this, you specify more previous lines with the P option when you enter
EDIT (see Section 4.1.1 earlier in this chapter for further details on the P option).

Moving to a Specific Line Number

The M command allows you to select a new current line by specifying its line
number. You type the M command and the desired line number. For example,
the command M45 tells EDIT to Move to line 45. If you are beyond line 45, this
command moves back to it provided it is still in main memory.

You can combine the specific line number and line counting commands. For
example,

M1R; 3N
To separate consecutive commands on the same line, type; (a semicolon).

By Context
You use the F command (Find) to select a current line by context. For
example,

F/Jabberwocky/

means to find the line containing “Jabberwocky”. The search starts at the
current line and moves forward through the source until the required line is
found. If EDIT reaches the end of the source without finding a matching line, it
displays the following message:

SOURCE EXHAUSTED

It is also possible to search backward by using the BF command (Backward
Find). For example,

BF/gyre and gimble/
BF also starts with the current line, but EDIT moves backward until it finds

the desired line. If EDIT reaches the head of the output queue without finding
a matching line, it displays the following message:

EDIT—THE LINE EDITOR 111

NO MORE PREVIOUS LINES

Notice that in the examples above, the desired text (Jabberwocky and gyre
and gimble) is enclosed in matching single slashes (/). This desired text
is called a character string. The characters you use to indicate the begin-
ning and end of the character string are called delimiter characters. In the
examples above, / was used as the delimiter. A number of special characters
such as : ., and * are available for use as delimiters; naturally, the string
itself must not contain the delimiter character. EDIT ignores the spaces
between the command name and the first delimiter, but considers spaces
within the string as significant, since it matches the context exactly. For
example,

F /tum tum tree/

does not find “tum-tum tree”” or ““tum tum tree”.
If you use an F command with no argument, EDIT repeats the previous
search. For example,

F/jubjub bird/; N; F

finds the second occurrence of a line containing “jubjub bird”. The N command
between the two F commands is necessary because an F command always
starts by searching the current line. If you omitted N, the second F would find
the same line as the first.

4.1.2.4 Qualifiers

The basic form of the F command described above finds a line that contains
the given string anywhere in its length. To restrict the search to the beginning or
the end of lines, you can place one of the letters B or E in front of the string. In
this case, you must type one or more spaces after F. For example,

F B/slithy toves/
means Find the line Beginning with “slithy toves”, while

F E/bandersnatch/
means Find the line Ending with “bandersnatch”. As well as putting further
conditions on the context required, the use of B or E speeds up the search, as

EDIT only needs to consider part of each line.
B and E as used above are examples of qualifiers, and the whole argument is

112 AMIGADOS USER'S MANUAL

called a qualified string. A number of other qualifiers are also available. For
example,

F P/a-sitting on a gate/
means Find the next line containing Precisely the text “a-sitting on a gate”’. The
required line must contain no other characters, either before or after the given
string. That is to say, when you give this command, EDIT finds the next line
containing:

a-sitting on a gate

However, EDIT does not find the line:

a-sitting on a gate.

To find an empty line (Precisely nothing), you can use an empty string with
the P qualifier, for example,

F P/
You can give more than one qualifier in any order.

4.1.2.5 Making Changes to the Current Line
This section describes how to use the E, A, and B commands to alter the text
on your current line.

Exchanging strings
The E command Exchanges one string of characters in the line for another. For
example:

E/Wonderland/Looking Glass/
removes the string “Wonderland” from the current line, and replaces it with
“Looking Glass”. Note that you use a single central delimiter to separate the
two strings. To delete parts of the line (exchange text for nothing), you can use
a null second string, as follows:

E/monstrous crow//

To add new material to the line, you can use the A or B commands. The A
command inserts its second string After the first occurrence of the first string

EDIT—THE LINE EDITOR 113

on the current line. Similarly, the B command insert its second string Before
the first occurrence of the first string on the current line. For example, if the
current line contained

If seven maids with seven mops

then the following command sequence:
A/seven/ty/; B L/iseven/sixty-/

would turn it into:
If seventy maids with sixty-seven mops

If you had omitted the L qualifier from the B command above, the result
would have been:

If sixty-seventy maids with seven mops

because the search for a string usually proceeds from left to right, and EDIT
uses the first occurrence that it finds. You use the qualifier L to specify that the
search should proceed Leftward. The L qualifier forces the command that it
qualifies to act on the Last occurrence of its first argument.

If the first string in an A, B, or E command is empty, EDIT inserts the second
string at the beginning or the end of the line. To further qualify the position of
the second string, you use or omit the L or the E qualifiers.

If you give EDIT an A, B, or E command on a line that does not match the
qualified string given as the first argument, the following message appears
either on the screen or in a verification file that you specified when you entered
EDIT.

NO MATCH
See Section 4.1.1, ““Calling EDIT” for details on the verification file.

4.1.2.6 Deleting Whole Lines

This section describes how to remove lines of text from your file. To delete a
range of lines, you can specify their line numbers in a D command. To use the
D command, type D and the line number. If you type a space and a second
number after D, EDIT removes all the lines from the first line number to the
last. For example,

DO7 104

114 AMIGADOS USER'S MANUAL

deletes lines 97 to 104 inclusive, leaving line 105 as the new current line.
To delete the current line, type D without a qualifying number. For example,

F/plum cake/; D

deletes the line containing “‘plum cake”, and the line following it becomes the
new current line. You can combine a qualified search with a delete command,
as follows:

F B/The/; 4D

This command sequence deletes four lines, the first of which is the line
beginning with “The”.

You can also type a period (.) or an asterisk (*) instead of line numbers. To
refer to the current line, type a period. To refer to the end-of-file, type an
asterisk. For example,

D.*
deletes the rest of the source including the current line.

4.1.2.7 Inserting New Lines

This section describes how to insert text into your file with EDIT. To insert one
or more lines of new material BEFORE a given line, you use the I command.
You can give the I command alone or with a line number, a period (.), or an
asterisk (*). EDIT inserts text before the current line if you give I on its own, or
follow it with a period (.). If you type an asterisk (*) after I, your text is inserted
at the end of the file (that is, before the end-of-file line). Any text that you type
is inserted before the line you specified.

To indicate the end of your insertion, press RETURN, type Z, and press
RETURN again. For example,

I 468
The little fishes of the sea,
They sent an answer back to me.

rr
4

inserts the two lines of text before line 468.
If you omit the line number from the command, EDIT inserts the new
material before the current line. For example,

EDIT—THE LINE EDITOR 115

F/corkscrew/; 1
He said, “I'll go and wake them, if ...”
Z

This multiple command finds the line containing “corkscrew”” (which then
becomes the current line) and inserts the specified new line.

After an I command containing a line number, the current line is the line of
that number; otherwise, the current line is unchanged.

To insert material at the end of the file, type I*.

To save you typing, EDIT provides the R (Replace) command, the exact
equivalent of typing DI (D for Delete followed by I for Insert). For example,

R19 26
In winter when the fields are white
Z

deletes lines 19 to 26 inclusive, then inserts the new material before line 27,
which becomes the current line.

4.1.2.8 Command Repetition

You can also use individual repeat counts as shown in the examples for N
and D above with many EDIT commands. In addition, you can repeat a
collection of commands by forming them into a command group using paren-
theses as follows:

6(F P//; D)

deletes the next six blank lines in the source. Command groups may not
extend over more than one line of command input.

4.1.3 Leaving EDIT

To end an EDIT session, you use the command W (for Windup). EDIT ““winds
through” to the end of the source, copying it to the destination, and exits.
Unless you specify a TO file, EDIT renames the temporary output file as the
FROM filename.

EDIT can accept commands from a number of command sources. In the
simplest case, EDIT accepts commands directly from the terminal (that is, from
the keyboard); this is called the primary command level. EDIT can, however,
accept commands from other sources, for example, command files or WITH
files.

116 AMIGADOS USER'S MANUAL

You can call command files from within EDIT, and further command files
from within command files, with the C command, so that each nested com-
mand file becomes a separate command level. EDIT stops executing the com-
mands in the command file when it comes to the end of the command file, or
when it finds a Q. When EDIT receives a Q command in a command file, or it
comes to the end of the file, it immediately stops executing commands from
that file, and reverts to the previous command level. If EDIT finds a Q
command in a nested command file, it returns to executing commands in the
command file at the level above. If you stop editing at the primary command
level, by typing Q, or if EDIT finds a Q in a WITH file, then EDIT winds up and
exits in the same way as it does with W.

The command STOP terminates EDIT without any further processing. In
particular, EDIT does not write out any pending lines of output still in memory
so that the destination file is incomplete. If you only specify the FROM
argument, EDIT does NOT overwrite the source file with the (incomplete)
edited file. You should only use STOP if you do not need the output from the
EDIT run.

EDIT writes a temporary backup to :T/ED-BACKUP when you exit with the
W or Q commands. This backup file remains until you exit from EDIT with
these commands again, whereupon EDIT overwrites the file with a new backup.
If you use the STOP command, EDIT does not write to this file.

4.1.4 A Combined Example: Pulling It All Together

You can meet most simple editing requirements with the commands already
described. This section presents an example that uses several commands. The
text in italics following the editing commands in the example is a comment.
You are not meant to type these comments; EDIT does not allow comments in
command lines.

To make it easier for you to follow what is happening, we have included this
file as “Edit__Sample” on your accompanying disk.

Take the following source text (with line numbers):

Tweedledee and Tweedledum
agreed to a battle,

For Tweedledum said Tweedledee
ad spoiled his nice new rattle.

As black as a tar barrel
Which frightened both the heroes so
They quite forgot their quorell

VIO Gk WP

Execute these EDIT commands:

EDIT—THE LINE EDITOR 117

M]1; E/dum/dee/; E/dee/dum/ <the order of the E commands matters!>
N; E/a/A/; B /a /have / <now at line 2>

F B/ad/; B//H/ <H at line start>

FP/N; 1 <before line after blank one>

Just then flew down a monstrous

crow,

Z

M6; 2(A L///; N) <commas at end of lines>

F/quore/; E/quorell/quarrel./
<F is, in fact, redundant>
w <Windup>

The following text (with new line numbers) is the result.

Tweedledum and Tweedledee
Agreed to have a battle,

For Tweedledum said Tweedledee
Had spoiled his nice new rattle.

Just then flew down a monstrous crow,
As black as a tar barrel,

Which frightened both the heroes so,
They quite forgot their quarrel.

OO N ONUT ™ ON e

Note: If you experiment with editing this source file, you'll find that you
don’t have to use the commands in the example above. For instance, on the
second line, you could use the following command:

E/a/have a/

to produce the same result. In other words, E Exchanges “a” for ““have a”, and
B places “have” Before “a” to produce “have a”.

4.2 A Complete Specification of EDIT

After reading the first part of this chapter on the basic features of EDIT, you
should be able to use the editor in a simple way. The rest of this chapter is a
reference section that provides a full specification of all the features of EDIT.
You may need to consult this section if you have any problems when editing or
if you want to use EDIT in a more sophisticated way.

The features described in this section are as follows:

118 AMIGADOS USER’'S MANUAL

» Command syntax

+ Control of Command, Input, and Output Files
* Processing EDIT

« Functional Groupings of EDIT Commands

» Line Windows

* String Operations on the Current Line

* Miscellaneous Current Line Commands

« Inspecting Parts of the Source: The Type Commands
+ Control of Command, Input, and Output Files
* Loops

* Global Operations

* Displaying the Program State

*» Terminating an EDIT Run

* Current Line Verification

+ Miscellaneous Commands

+ Abandoning Interactive Editing

4.2.1 Command Syntax

EDIT commands consist of a command name followed by zero or more
arguments. One or more space characters may optionally appear between
a command name and the first argument, between non-string arguments,
and between commands. A space character is only necessary in these places
to separate successive items otherwise treated as one (for example, two
numbers).

EDIT understands that a command is finished in any of the following ways:
when you press RETURN; when EDIT reaches the end of the command
arguments; or when EDIT reads a semicolon (;), or closing parentheses (), that
you have typed.

You use parentheses to delimit command groups.

To separate commands that appear on the same line of input, you type a
semicolon. This is only strictly necessary in cases of ambiguity where a com-
mand has a variable number of arguments. EDIT always tries to read the
longest possible command.

Except where they appear as part of a character string, EDIT thinks of upper
and lower case letters as the same.

4.2.1.1 Command Names

A command name is either a sequence of letters or a single special character
(for example, #). An alphabetic command name ends with any nonletter; only
the first four lettters of the name are significant. One or more spaces may
appear between command names and their arguments; EDIT requires at least

EDIT—THE LINE EDITOR 119

one space when an argument starting with a letter follows an alphabetic
narne.

4.2.1.2 Arguments
The following sections describe the six different types of arguments you can
use with EDIT commands:

* strings

* qualified strings

* search expressions
* numbers

* switch values

¢ command groups

4.2.1.3 Strings

A string is a sequence of up to 80 characters enclosed in delimiters. You may
use an empty (null) string. (A null string is exactly what it sounds like: a
nonstring, that is, delimiters enclosing nothing, for example, //.) The character
that you decide to use to delimit a particular string may not appear in the
string. The terminating delimiter may be omitted if it is immediately followed
by the end of the command line.

The following characters are available for use as delimiters:

fo 4+ —,2:*

that is, common English punctuation characters (except ;) and the four arithme-
tic operators.
Here are some examples of strings:

A/

Menai Bridge

??

+String with final delimiter omitted

4.2.1.4 Multiple Strings

Commands that take two string arguments use the same delimiter for
both and do not double it between the arguments. An example is the A
command: :

A /King/The Red /

For all such commands the second string specifies replacement text. If you
omit the second string, EDIT uses the null string. If you do this with the A and

120 AMIGADOS USER’S MANUAL

B command, then nothing happens because you have asked EDIT to insert
nothing after or before the first string. However, if you omit the second string
after an E command, EDIT deletes the first string.

4.2.1.5 Qualified Strings

Commands that search for contexts, either in the current line or scanning
through the source, specify the context with qualified strings. A qualified
string is a string preceded by zero or more qualifiers. The qualifiers are single
letters. They may appear in any order. For example,

BU/Abc/

Spaces may not appear between the qualifiers. You may finish a list of
qualifiers with any delimiter character. The available qualifiers are B (Begin-
ning), E (End), L (Left or Last), P (Precisely), and U (Uppercase).

4.2.1.6 Search Expressions

Commands that search for a particular line in the source take a search
expression as an argument. A search expression is a single qualified string. For
example,

F B/Tweedle/
tells EDIT to look for a line beginning with the string “Tweedle”.

4.2.1.7 Numbers
A number is a sequence of decimal digits. Line numbers are a special form of
number and must always be greater than zero. Wherever a line number

appears, the characters “.” and “*’ may appear instead. A period represents

the current line, and an asterisk represents the last line at the end of the source
file. For example,

M*
instructs EDIT to move to the end of the source file.

4.2.1.8 Switch Values

Commands that alter EDIT switches take a single character as an argument.
The character must be either a + or —. For example, in

V-

the minus sign (~) indicates that EDIT should turn off the verification. If you

EDIT—THE LINE EDITOR 121

then type V+, EDIT turns the verification on again. In this case, you can
consider + as “on’” and - as “off”.

4.2.1.9 Command Groups
To make a number of individual EDIT commands into a command group,
you can enclose them in parentheses. For example, the following line:

(f/'Walrus/;e/Walrus/Large Marine Mammal/)

finds the next occurrence of ‘Walrus’ and changes it to ‘Large Marine Mam-
mal’. Command groups, however, may not span more than one line of input.
For instance, if you type a command group that is longer than one line, EDIT
only accepts the commands up to the end of the first line. Then, because EDIT
does not find a closing parenthesis at the end of that line, it displays the
following error message:

Unmatched parenthesis

Note that it is only necessary to use parentheses when you intend to repeat a
command group more than once.

4.2.1.10 Command Repetition
EDIT accepts many commands preceded by an unsigned decimal number to
indicate repetition. For example

4N

If you give a value of zero, then EDIT executes the command indefinitely (or
until end-of-file is reached). For example, if you type

O(e /dum/dee/;n)
EDIT exchanges every occurrence of “dum” for “dee” to the end of the
file.

You can specify repeat counts for command groups in the same way as for
individual commands:

12(F/handsome/; E/handsome/hansom/; 3N)

122 AMIGADOS USER'S MANUAL

4.2.2 Processing EDIT

This section describes what happens when you run EDIT. It gives details about
where input comes from and where the output goes, what should appear on
your screen, and what should eventually appear in your file after you have run
EDIT.

4.2.2.1 Prompts

When EDIT is being run interactively, that is, with both the command file
connected to the keyboard and the verification file connected to a window, it
displays a prompt when it is ready to read a new line of commands. Although,
if the last command of the previous line caused verification output, EDIT does
not return a prompt.

If you turn the verification switch V on, EDIT verifies the current line in
place of a prompt in the following circumstances:

« if it has not already verified the current line,
« if you have made any changes to the line since it was last verified, or
« if you have changed the position of the operational window.

Otherwise, when EDIT does not verify the current line, it displays a colon
character (:) to indicate that it is ready for a new line of commands. This colon
is the usual EDIT prompt.

EDIT never gives prompts when you are inserting lines.

4.2.2.2 The Current Line

As EDIT reads lines from the source file and writes them to the destination
file, the line that EDIT has in its hand at any time is called the current line.
Every command that you type refers to the current line. EDIT inserts new lines
before the current line. When you start editing with EDIT, the current line is
the first line of the source.

4.2.2.3 Line Numbers

EDIT identifies each line in the source by a unique line number. This is not
part of the information stored in the file. EDIT computes these numbers by
counting the lines as it reads them. EDIT does not assign line numbers to any
new lines that you insert into the source.

EDIT distinguishes between original and nonoriginal lines. Original lines
are source lines that have not been split or inserted; nonoriginal lines are split
lines and inserted lines. Commands that take line numbers as arguments may
only refer to original lines. EDIT moves forward, or backward up to a set limit,
according to whether the line number you type is greater or less than the

EDIT—THE LINE EDITOR 123

current line number. EDIT passes over or deletes (if appropriate) nonoriginal
lines in searches for a given original line.

When you type a period (.) instead of a line number, EDIT always uses the
current line whether original or nonoriginal. (For an example of its use, see
Section 4.1.2.6, Deleting Whole Lines.)

You can renumber lines with the ="' command. This ensures that all lines
following the current line are original. Type:

=15

to number the current line as 15, the next line 16, the next 17, and so on to the
end of the file. This is how you allocate line numbers to nonoriginal lines. If
you do not qualify the = command with a number, EDIT displays the message:

Number expected after =

4.2.2.4 Qualified Strings

To specify contexts for EDIT searches, you can use qualified strings. EDIT
accepts the null string and always matches it at the initial search position,
which is the beginning of the line except as specified below. In the absence of
any qualifiers, EDIT may find the given string anywhere in a line. Qualifiers
specify additional conditions for the context. EDIT recognizes five qualifiers B,
E, L, P, and U as follows:

B

where the string must be at the Beginning of the line. This qualifier may not
appear with E, L, or P.

E

where the string must be at the End of the line. This qualifier may not appear
with B, L, or P. If E appears with the null string, it matches with the end of the
line. (That is, look for nothing at the end of a line.)

L

where the search for the string is to take place Leftward from the end of the
line instead of rightward from the beginning. If there is more than one
occurrence of the string in a line, this qualifier makes sure that the Last one is
found instead of the first. L may not appear with B, E, or P. If L appears with
the null string, it matches with the end of the line. (That is, look leftward from
the end of the line for an occurrence of nothing.)

124 AMIGADOS USER'S MANUAL

P

where the line must match the string Precisely and must contain no other
characters. P must not appear with B, E, or L. If P appears with a null string, it
matches with an empty line.

8]

where the string match is to take place whether or not upper or lower case is
used. (That is, as though you translated both the string and the line into
Uppercase letters before comparing them.) For example, when you specify U,
the following string

[TWEEDledum/
should match a line containing
TweedleDUM
as well as any other combination in upper or lower case.

4.2.2.5 Output Processing

EDIT does not write lines read in a forward direction to the destination file
immediately, but instead it adds them to an output queue in main memory.
When EDIT has used up the memory available for such lines, it writes out the
lines at the head of the queue as necessary. Until EDIT has actually written out
a line to the destination file, you can move back and make it the current line
again.

You can also send portions of the output to destination files other than TO.
When you select an alternative destination file, EDIT writes out the queue of
lines for the current output file.

4.2.2.6 End-of-File Handling

When EDIT reaches the end of a source file, a dummy end-of-file line
becomes current. This end-of-file line has a line number one greater than the
number of lines in the file. EDIT verifies the line by displaying the line number
and an asterisk.

When the end-of-file line is current, commands to make changes to the
current line, and commands to move forward, produce an error. Although, if
you contain these kinds of commands within an infinitely repeating group,
EDIT does not give an error on reaching the end-of-file line. The E (Exchange)
command is an example of a command to make changes to the current line.
The N (Next) command is an example of a command to move forward.

EDIT—THE LINE EDITOR 125

4.2.3 Functional Groupings of EDIT Commands

This section contains descriptions of all EDIT commands split up by function.
A summary and an alphabetical list of commands appear later.

The following descriptions use slashes (/) to indicate delimiter characters
(that is, characters that enclose strings). Command names appear in upper
case; argument types appear in lower case as follows:

Notation Description

ab line numbers (or.or*)

cg command group

m,n numbers

q qualifier list (possibly empty)
se search expression

s,t strings of arbitrary characters
sw switch value (+ or -)

/ string delimiter

Table 4.1: Notation for Command Descriptions

Note: Command descriptions that appear in the rest of this manual with the
above notation show the SYNTAX of the command; they are not examples of
what you actually type. Examples always appear as follows in

this typeface.

4.2.3.1 Selection of a Current Line

These commands have no function other than to select a new current line.
EDIT adds lines that it has passed in a forward direction to the destination
output queue (for further details on the output queue, see Section 4.1, “Intro-
ducing EDIT”). EDIT queues up lines that it has passed in a backward
direction ready for subsequent reprocessing in a forward direction. M takes a
line number, period, or asterisk. So, using the command notation described
above, the correct syntax for M is as follows:

Ma

where Ma moves forward or backward to line ““a” in the source. Only original
lines can be accessed by line number.

M+

makes the last line actually read from the file current line. M+ moves through
all the lines currently held in memory until the last one is reached.

126 AMIGADOS USER’'S MANUAL

M-

makes the last line on the output queue current. This is like saying to EDIT:
““Move back as far as you can.”

N

moves forward to the next line in the source. When the current line is the last
line of the source, executing an N command does not create an error. EDIT
increases the line number by adding one to it and creates a special end-of-file
line. However, if .you try to use an N command when you are already at the
end of the source file, EDIT returns an error.

P

moves back to the previous line. You can move more than one line back by
either repeating P, or giving a number before it. The number that you give
should be equal to the number of lines you want to move back.

The syntax for the F (Find) command is

F se

So, F finds the line you specify with the search expression “’se”’. The search
starts at the current line and moves forward through the source. The search
starts at the current line in order to cover the case where the current line has
been reached as a side effect of previous commands—such as line deletion. An
F command with no argument searches using the last executed search expression.

The syntax for the BF (Backward Find) command is

BF se

BF behaves like F except that it starts at the current line and moves backward
until it finds a line that matches its search expression.

4.2.3.2 Line Insertion and Deletion

Commands may select a new current line as a side effect of their main
function. Those followed by in-line insertion material must be the last com-
mand on a line. The insertion material is on successive lines terminated by Z
on a line by itself. You can use the Z command to change the terminator. EDIT
recognizes the terminator you give in either upper or lower case. For example,
using the same notation,

EDIT—THE LINE EDITOR 127

Ia
<insertion material, as many
lines as necessary>

Z

inserts the insertion material before ““a”. Remember that “a” can be a specific
line number, a period (representing the current line), or an asterisk (represent-
ing the last line of the source file). If you omit “‘a”, EDIT inserts the material
before the current line; otherwise, line ““a’” becomes the current line.

I/s/

117
S

inserts the contents of the file “‘s” (remember,
current line.

means any string) before the

Rab

<replacement material>
V4
Ra b/s/

The R command is equivalent to D followed by I. The second line number
must be greater than or equal to the first. You may omit the second number if
you want to replace just the one line (that is, if b = a). You may omit both
numbers if you want to replace the current line. The line following line b
becomes the new current line.

The syntax for the D (Delete) command is as follows:

Dab

So, D deletes all lines from a to b inclusive. You may omit the second line
number if you want to delete just the one line (that is, if b=a). You may omit
both numbers if you want to delete the current line. The line following line b
becomes the new current line.

The syntax of the DF (Delete Find) command is

DF se

The command DF (Delete Find) tells EDIT to delete successive lines from
the source until it finds a line matching the search expression. This line then
becomes the new current line. A DF command with no argument searches
(deleting as it goes) using the last search expression you typed.

128 AMIGADOS USER'S MANUAL

4.2.4 Line Windows

EDIT usually acts on a complete current line. However, you can define parts of
the line where EDIT can execute your subsequent commands. These parts of
lines are called line windows. This section describes the commands you use to
define a window.

4.2.4.1 The Operational Window

EDIT usually scans all the characters in a line when looking for a given
string. However it is possible to specify a “line window”, so that the scan for a
character starts at the beginning of the window, and not at the start of the line.
In all the descriptions of EDIT context commands, “‘the beginning of the line”
always means “the beginning of the operational window.”

Whenever EDIT verifies a current line, it indicates the position of the opera-
tional window by displaying a “>"" character directly beneath the line. For
example in the following:

Q6.

This is 1ine 26 this is.
>

the operational window contains the characters to the right of the pointer: “line
26 this is.” EDIT omits the indicator if it is at the start of the line.

The left edge of the window is also called the character pointer in this
context, and the following commands are available for moving it:

>

moves the pointer one character to the right.
<

moves the pointer one character to the left.

PR

Pointer Reset sets the pointer to the start of the line.
The syntax for the PA (Point After) command is

PA q/s/

Point After sets the pointer so that the first character in the window is the first
character following the string s. For example,

EDIT—THE LINE EDITOR 129

PA L/

moves the pointer to the end of the line.
The syntax for the PB (Point Before) command is

PB q/s/
Point Before is the same as PA, but includes the string itself in the window.

4.2.4.2 Single Character Operations on the Current Line

The following two commands move the character pointer one place to the
right after forcing the first letter into either upper or lower case. If the first
character is not a letter, or is already in the required case, these commands are
equivalent to >.

The command

$

forces lower case (Dollar for Down).
The command

%

forces upper case (Percent for uP).

The “_" (underscore) command changes the first character in the window
into a space character, then moves the character pointer one place to the
right.

The command

#

deletes the first character in the window. The remainder of the window moves
one character to the left, leaving the character pointer pointing at the next
character in the line. The command is exactly equivalent to

E/s//

where "’s” is the first character in the window. To repeat the effect, you specify a
number before the “#” command. If the value is “n”, for example, then the
repeated command is equivalent to the single command

E/s//

130 AMIGADOS USER'S MANUAL

where /s’ is the first character in the window. To repeat the effect, you specify
a number before the “#” command. If the value is “n”, for example, then the
repeated command is equivalent to the single command

E/s//

where ““s” is the first “n”’ character in the window or the whole of the contents
of the window, whichever is the shorter. Consider the following example:

5#

deletes the next five characters in the window. If you type a number equal to
or greater than the number of characters in the window, EDIT deletes the
contents of the entire window. EDIT treats a sequence of “#”’ commands in the
same way as a single, repeated “#”’ command. So, # # # # # is the same as
typing a single #, pressing RETURN after each single #, five times.

You can use a combination of “>""%"$""_"" and “#” commands to edit a line
character by character, the commands appearing under the characters they
affect. The following text and commands illustrate this:

o Oysters,, Come ANDDWALK with us
%>$$58888#>>85858885__SSSS888888#44#

The commands in the example above change the line to
0 oysters, come and walk with us
leaving the character pointer immediately before the word “us”.

4.2.5 String Operations on the Current Line

To specify which part of the current line to qualify, you can either alter the
basic string or point to a variant, as described in the next two sections.

4.2.5.1 Basic String Operations

Three similar commands are available for altering parts of the current line.
The A, B, and E commands insert their second (string) argument After, Before,
or in Exchange for their first argument respectively. You may qualify the first
argument. If the current line were

The Carpenter beseech

then the commands

EDIT—THE LINE EDITOR 131

E U/carpenter/Walrus/ <Exchange>
B/bese/did / <insert string before>
A LIty <Insert string after>

would change the line to
The Walrus did beseech;

4.2.5.2 The Null String

You can use the null, or empty string (/) after any string command. If you
use the null string as the second string in an E command, EDIT removes the
first string from the line. Provided EDIT finds the first string, an A or B
command with a null second string does nothing; otherwise, EDIT returns an
error. A null first string in any of the three commands matches at the initial
search position. The initial search position is the current character position
(initially the beginning of the line) unless either of the E or L qualifiers
is present, in which case the initial position is the end of the line. For
example,

Al//carpenter/

puts the text carpenter After nothing, that is, at the beginning of the line.
Whereas

A L//carpenter
puts carpenter at the end of the line After the Last nothing.

4.2.5.3 Pointing Variant

The AP (insert After and Point), BP (insert Before and Point), and EP
(Exchange and Point) commands take two strings as arguments and act exactly
like A, B, and E. However, AP, BP, and EP have an additional feature: when
the operation is complete, the character pointer is left pointing to the first
character following both text strings. So, using the same command syntax
notation,

AP/s/t/
is equivalent to
Al/s/t/;PA/st/

while

132 AMIGADOS USER’S MANUAL

BP/s/t/
is equivalent to

B/s/t/;PA/ts/
and

REP U/tweadle/Tweedle/
would change

tweadledum and TWEADLEdee
into

Tweedledum and Tweedledee
leaving the character pointer just before dee.

4.2.5.4 Deleting Parts of the Current Line

You use the commands DTA (Delete Till After) and DTB (Delete Till Before)
to delete from the beginning of the line (or character pointer) to a specified
string. To delete from a given context until the end of the line, you use the
commands DFA (Delete From After) and DFB (Delete From Before). If the
current line were

All the King’s horses and all the King’s men
then the command

DTB L/King’s/
would change it to

King’s men
while

DTA/horses /

would change it to

and all the King’s men

EDIT—THE LINE EDITOR 133

4.2.6 Miscellaneous Current Line Commands

This section includes some further commands that explain how to repeat
commands involving strings, how to split the current line, and how to join
lines together.

Whenever EDIT executes a string alteration command (for example, A, B, or
E), it becomes the current string alteration command. To repeat the current
string alteration command, you can type a single quote ('). The * command has
no arguments. It takes its arguments from the last A, B, or E command.

WARNING: Unexpected effects occur if you use sequences such as
E/castle/knight/; 4(’; E/pawn/queeny/)

The second and subsequent executions of the ‘ command refer to a
different command than the first. The above example would exchange
castle and knight twice and exchange pawn and queen seven times
instead of exchanging castle and knight once and then four times ex-
changing castle and knight and pawn and queen.

4.2.6.1 Splitting and Joining Lines

EDIT is primarily a line editor. Most EDIT editing commands do not operate
over line boundaries, but this section describes commands for splitting a line
into more than one line and for joining together two or more successive lines.

To split a line before a specified context, you use the SB command. The
syntax for the SB command is

SB qg/s/

SB takes an optional qualifier represented here by q, and a string /s/. SB
Splits the current line Before the context you specify with the qualifier and
string. EDIT sends the first part of the line to the output and makes the
remainder into a new, nonoriginal current line.

To split a line after a specified context, you use the SA command. The syntax
for SA is

SA q/s/
SA takes an optional qualifier and a string (q and /s/). SA Splits the current

line After the context you specify with the qualifier and string.
To concatenate a line, you use the CL command. The syntax for CL is

134 AMIGADOS USER’S MANUAL

CL/s/

CL takes an optional string that is represented here by /s/. CL or Concatenate
Line forms a new current line by concatenating the current line, the string you
specified, and the next line from the source, in that order. If the string is a null
string, you may type the command CL without specifying a string.

For an example of splitting and joining lines, look at the text

Humpty Dumpty sat on a wall; Humpty
Dumpty had a
great fall.

The old verse appears disjointed; the lines need to be balanced. If you make
the first line the current line, the commands

SA /; /; CL/ /
change the line into

Humpty Dumpty sat on a wall;
leaving

Humpty Dumpty had a great fall.

as the new current line.

4.2.7 Inspecting Parts of the Source: The Type Commands

The following commands all tell EDIT to advance through the source, sending
the lines it passes to the verification file as well as to the normal output (where
relevant). Because these commands are most frequently used interactively (that
is, with verification to the screen), they are known as the “type”” commands.
They have this name because you can use them to “type” out the lines you
specify on the screen. This does not however mean that you cannot use them
to send output to a file. After EDIT has executed one of these commands, the
last line it “typed” (that is, displayed) becomes the new current line.
The syntax for the T (Type) command is

Tn

a1’

Tn types “n” lines. If you omit “n”, typing continues until the end of the
source. However, you can always interrupt the typing with CTRL-C.

EDIT—THE LINE EDITOR 135

Note: Throughout this manual when you see a hyphen between two keys,
you press them at the same time. So CTRL-C means to hold down the CTRL
key while you type C.

When you use the T command, the first line EDIT types is the current line,
so that, for example,

F /It's my own invention/; T6

types six lines starting with the one containing “It’s my own invention”. (Note
that to find the correct line, you must type the “I” in “It's” in upper case.)
The command

TP

types the lines in the output queue. Thus, TP (Type Previous) is equivalent to
EDIT executing M- followed by typing until it reaches the last line it actually
read from the source.

The command

TN

types until EDIT has changed all the lines in the output queue. (For more
information on the output queue, see Section 4.1, “Introducing EDIT.”) So,
a TN (Type Next) command types N lines, where N was the number speci-
fied as the P option. (To find out more about the P option, refer to
Section 4.1.1, Calling EDIT). The advantage of the TN command is that every-
thing visible during the typing operation is available in memory to P and
BF commands.
The syntax for the TL (Type with Line numbers) command is as follows:

TLn

TLn types n lines as for T, but with line numbers added. Inserted and
split lines do not have line numbers, EDIT displays a “+ + + +"" instead. For
example,

20 0 oysters, come and walk with us
+ + + + and then we’ll have some tea

The original line starting with “O oysters” has a line number. The non-
original line, inserted after line 20, starts with + + + +. (Remember that you
can use the = command to renumber nonoriginal lines.)

136 AMIGADOS USER'S MANUAL

4.2.8 Control of Command, Input, and Output Files
EDIT uses four types of files:

* command
* input

* output

+ verification

Once you have entered EDIT, you cannot change the verification file with
a command. (To find out more about the verification file, see Section 4.1.1,
“Calling EDIT.”) The following sections describe commands that can change
the command, input, and output files that you set up when you enter
EDIT.

4.2.8.1 Command Files

When you enter EDIT, it reads commands from the terminal or the file that
you specify as WITH. To read commands from another file, you can use the C
command. The syntax for the command is

C.s.

where the string “s” represents a filename. As AmigaDOS uses the slash
symbol (/) to separate filenames, you should use periods (.), or some other
symbol, to delimit the filename. A symbol found in a string should not be used
as a delimiter. When EDIT has finished all the commands in the file (or you
give a Q command), it closes the file and control reverts to the command
following the C command. For example, the command

C ..T/XYZ.
reads and executes commands from the file :T/XYZ

4.2.8.2 Input Files

To insert the entire contents of a file at a specific point in the source, you use
the I and R commands. These commands are described in Section 4.1.2.7
earlier in this chapter.

Section 4.1.1 described how to call EDIT. In that section, the source file was
referred to as the FROM file. However, you can also associate the FROM file
with other files, using the command FROM. The FROM command has the
following form:

FROM .s.

EDIT—THE LINE EDITOR 137

where the string “‘s” is a filename. A FROM command with no argument
reselects the original source file.

When EDIT executes a FROM command, the current line remains current;
however, the next line comes from the new source.

EDIT does not close a source file when the file ceases to be current; you can
read further lines from the source file by reselecting it later.

To close an output file that you opened in EDIT, and that subsequently you
want to open for input (or the other way around), you must use the CF (Close
File) command. The CF command has the following form:

CF .s.

where the string ““s” represents a filename. When you end an EDIT session,
EDIT closes automatically all the files you opened in EDIT.

Note: Any time you open a file, EDIT starts at the beginning of that file. If
you close a file with CF, EDIT starts on the first line of that file if you reopen
it, and not at the line it was on when you closed the file.

An example of the use of the FROM command to merge lines from two files
follows:

Command Action

M10 Pass lines 1-9 from the FROM (source) file
FROM .XYZ. Select new input, line 10 remains current

Mé Pass line 10 from FROM, lines 1-5 from XYZ
FROM Reselect FROM

Mi14 Pass line 6 from XYZ, lines 11-13 from FROM
FROM .XYZ. Reselect XYZ

M Pass line 14 from FROM, the rest of XYZ
FROM Reselect FROM

CF . XYZ. Close XYZ

M* Pass the rest of FROM (lines 15 till end-of-file)

4.2.8.3 Output Files

EDIT usually sends output to the file with filename TO. However, EDIT does
not send the output immediately. It keeps a certain number of lines in a queue
in main memory as long as possible. These lines are previous current lines or
lines that EDIT has passed before reaching the present current line. The num-
ber of lines that EDIT can keep depends on the options you specified when
you called EDIT. Because EDIT keeps these lines, it has the capability for
moving backward in the source.

To associate the output queue with a file other than that with the filename
TO, you can also use the TO command. The TO command has the form

138 AMIGADOS USER'S MANUAL

TO .s.
where ““s” is a filename.

When EDIT executes a TO command, it writes out the existing queue of
output lines if the output file is switched.

EDIT does not close an output file when it is no longer current. By re-
selecting the file, you can add further lines to it. The following example shows
how you can split up the source between the main destination TO and an
alternate destination XYZ.

Command Action

M11 Pass lines 1-10 to TO
TO.XYZ. Switch output file

M21 Pass lines 11-20 to XYZ
TO

M31 Pass lines 21-30 to TO
TO.XYZ.

M41 Pass lines 3140 to XYZ
TO

If you want to reuse a file, you must explicitly close it. The command
CF .filename.
closes the file with the filename you specify as the argument.

These input/output commands are useful when you want to move part of the
source file to a later place in the output. For example,

Command Action

TO .:T/1. Output to temporary file
1000N Advance through source
TO Revert to TO

CF ..T/1. Close output file :T.1
12000.:T/1. Reuse as input file

If you use the CF command on files you have finished with, the amount of
memory you need is minimized.

4.2.9 Loops

You can type an unsigned decimal number before many commands to indicate
repetition, for example,

EDIT—THE LINE EDITOR 139

24N

You can also specify repeat counts for command groups in the same way as
for individual commands, for example,

12(F/handsome/; E/handsome/hansom/; 3N)

If you give a repeat count of zero (0), the command or command group is
repeated indefinitely or until EDIT reaches the end of the source.

4.2.10 Global Operations

Global operations are operations that take place automatically as EDIT scans
the source in a forward direction. You can start and stop global operations with
special commands, described in the following sections.

WARNING: Be careful when you move backward through the source
not to leave any active or “‘enabled” globals. These enabled globals could
undo a lot of your work!

4.2.10.1 Setting Global Changes
Three commands, GA, GB, and GE are provided for simple string changes
on each line. Their syntax is as follows:

GA g/s/t/
GB g/s/t/
GE q/s/t/

These commands apply an A, B, or E command, as appropriate, to any
occurrence of string “s” in a new current line. They also apply to the line that
is current at the time the command is executed.

G commands do not rescan their replacement text; for example, the follow-

ing command
GE/Tiger Lily/Tiger Lily/

would not loop forever, but would have no visible effect on any line. However,
as a result of the “change”, EDIT would verify certain lines.

EDIT applies the global changes to each new current line in the order in
which you gave the commands.

140 AMIGADOS USER'S MANUAL

4.2.10.2 Cancelling Global Changes

The REWIND command cancels all global operations automatically. You can
use the CG (Cancel Global) command to cancel individual commands at any
time.

When a global operation is set up by one of the commands GA, GB, or GE,
the operation is allocated an identification number which is output to the
verification file (for example, G1). The argument for CG is the number of the
global operation to be cancelled. If CG is executed with no argument, EDIT
cancels all globals.

4.2.10.3 Suspending Global Changes

You can suspend individual global operations, and later resume using them
with DG (Disable Global) and EG (Enable Global) commands. These take the
global identification number as their argument. If you omit the argument,
all globals are turned off or on (disabled or enabled), as appropriate.

4.2.11 Displaying the Program State

Two commands beginning with SH (for SHow) output information about the
state of EDIT to the verification file.
The command SHD (SHow Data) takes the form

SHD

and displays saved information values, such as the last search expression.
The command SHG (SHow Globals) takes the form

SHG

and displays the current global commands, together with their identification
numbers. It also gives the number of times each global search expression
matches.

4.2.12 Terminating an EDIT Run

To “wind through” the rest of the source, you use the W command (Windup).
Note that W is illegal if output is not currently directed to TO. EDIT exits when
it has reached the end of the source, closed all the files, and relinquished the
memory. Reaching the end of the highest level command file has the same effect
as W. If you call EDIT specifying only the FROM filename, EDIT renames the
temporary output file it created with the same name as the original (that is, the
FROM filename), while it renames the original information as the file :T/EDIT-

EDIT--THE LINE EDITOR 141

BACKUP. This backup file is, of course, only available until the next time EDIT
is run.

The STOP command stops EDIT immediately. No further input or output is
attempted. In particular, the STOP command stops EDIT from overwriting the
original source file. Typing STOP ensures that no change is made to the input
information.

The Q command stops EDIT from executing the current command file
(EDIT initially accepts commands from the keyboard, but you can specify
a command file with the WITH keyword or with the C command) and makes
it revert to the previous one. A Q at the outermost level does the same
asa W.

4.2.13 Current Line Verification

The following circumstances can cause automatic verification to occur:

« When you type a new line of commands for a current line that EDIT has
not verified since it made the line current, or changed since the last
verification.

« When EDIT has moved past a line that it has changed, but not yet verified.

» When EDIT displays an error message.

In the first two cases, the verification only occurs if the V switch is on. The
command

V sw

changes the setting of the V switch. It is set ON (V +) if the initial state of EDIT
is interactive (commands and verifications both connected to a terminal), and
to OFF (V-) otherwise.

To explicitly request verification of the current line, you use the following
command:

?

This command verifies the current line. It is performed automatically if the V
switch is on and the information in the line has been changed. The verification
consists of the line number (or + + + + if the line is not original), with the
text on the next line.

An alternate form of verification, useful for lines containing nonprinting
characters, is provided by the command

142 AMIGADOS USER’'S MANUAL

The ! command verifies the current line with character indicators. EDIT
produces two lines of verification. The first is the current line in which EDIT
replaces all the nongraphic characters with the first character of their hexadeci-
mal value. In the second line, EDIT displays a minus sign under all the
positions corresponding to uppercase letters and the second hexadecimal digit
in the positions corresponding to nongraphic characters. All other positions
contain space characters.

The following example uses the ? and ! commands. To verify the current
line, you use the ? command. If, for instance, the following appears when you
use the ? command:

?
1.
The Walrus and the ??

then you might try to use the E command to exchange ““??"” for “Carpenter”.
However, EDIT may not recognize the text it displayed with “??” as two
question marks if the “??” characters correspond to two nongraphic charac-
ters. To find out what really is there, you use the ! command as follows:

!
1.
The Walrus and the 11
-- 44

To correct the line, you can use the character pointer and # command to
delete the spurious characters before inserting the correct text. (For further
details on using the character pointer and # command, see Section 4.2.4, Line
Windows.)

4.2.14 Miscellaneous Commands

This section describes all those commands that do not fit neatly into any of the
previous categories. It describes how to change a termination character, turn
trailing spaces off, renumber lines, and rewind the source file.

To change the terminator for text insertion, you use the Z command. The Z
command has the following form:

Z/s/

where /s/ represents a string. The string may be of any length up to 16
characters. The string is matched in either case. In effect, the search for the
terminator is done using the qualifiers PU. The initial terminator string is Z.

EDIT—THE LINE EDITOR 143

To turn trailing spaces on or off, you use the TR (TRailing spaces) command.
The TR command takes the following form:

TR sw

where sw represents a switch (+ for ON; — for OFF). EDIT usually suppresses
all trailing spaces. TR+ allows trailing spaces to remain on both input and
output lines.

To renumber the source lines, you use the = command. The = command
takes the form:

=n

where “n” represents a number. The command =n sets the current line
number to “n”. If you then move to the lines below the current line, EDIT
renumbers all the following original and nonoriginal lines. Although, if you
move back to previous lines after using the = command, EDIT marks all the
previous lines in the output queue as nonoriginal. When you rewind the
source file, EDIT renumbers all the lines in the file-original, nonoriginal, and
those previously renumbered with the = command.
To rewind the source file, you use the REWIND command. For example,

REWIND

This command rewinds the input file so that line 1 is the current line
again. First EDIT scans the rest of the source (for globals, and so forth).
Then it writes the lines to the destination, which is then closed and re-
opened as a new source. It closes the original source using a temporary
file as a destination. Any globals that you specify are cancelled. EDIT does
not necessarily require you to type the complete word (that is, REWIND). To
move to the beginning, you can type any of the following: REWI, REWIN, or
REWIND.

4.2.15 Abandoning Interactive Editing

To abandon most commands that read text, you press CTRL-C. In particular, if
you realize that a search expression has been mistyped, then CTRL-C stops the
search. Similarly the T command types to the end of the source, but CTRL-C
abandons this action.

After you press CTRL-C, EDIT responds with the message

**+ BREAK

144 AMIGADOS USER’'S MANUAL

and returns to reading commands. The current line does, of course, depend on
exactly when you pressed CTRL-C.

Quick Reference Card

This list uses the following abbreviations:

Notation Description

gs Qualified string

t String

n Line number, or .or*(current and last line)
sw + or — (on or off)

Character Pointer Commands (Line Window Commands)

Command Action

< Move character pointer left

> Move character pointer right

Delete character at pointer

$ Lower case character at pointer

% Upper case character at pointer

—_ Turn character at pointer to space
PA gs Move character pointer to after gs

PB gs Move character pointer to before gs
PR Reset character pointer to start of line

Positioning Commands

Command Action

Mn Move to line n

M + Move to highest line in memory
M- Move to lowest line in memory
N Next line

P Previous line

REWIND Rewind input file

Search Commands

Command Action
Fgs Find string gs
BF gs Same as F, but move backward through file

DF gs Same as F, but delete lines as they are passed

EDIT—THE LINE EDITOR 145

Text Verification

Command
?

!

T

Tn

TLn

TN

TP

V sw

Action

Verify current line

Verify with character indicators
Type to end of file

Type n lines

Type n lines with line numbers
Type until buffer changed

M-, then type to last line in buffer
Set verification on or off

Operations on the Current Line

Command
Agst
AP gst
Bgst
BP gst
CLt

D

DFA gs
DFB gs
DTA gs
DTB gs
Eqgst
EP gs t
I

[t

R

Rt

SA gs
SB gs

Globals

Command
GAgst
GBgst
GEgst
CGn

DG n
EGn
SHG

Action

Place string t after gs

Same as A, but move character pointer
Place string t before gs

Same as B, but move character pointer
Concatenate current line, string t, and next line
Delete current line

Delete from after gs to end of line
Delete from before gs to end of line
Delete from start of line to after gs
Delete from start of line to before gs
Exchange string gs with string t

Same as E, but move character pointer
Insert material from terminal before line
Insert from file t

Replace material from terminal

Replace material from file t

Split line after gs

Split line before gs

Action

Globally place t after gs

Globally place t before gs
Globally exchange gs for t
Cancel global n (all if n omitted)
Disable global n (all if n omitted)
Enable global n (all if n omitted)
Display info on globals used

146

AMIGADOS USER'S MANUAL

Input/Output Manipulation

Command
FROM
FROM t
TO

TO t

CFt

Action

Take source from original
Take source from file t
Revert to original destination
Place output lines in file t
Close file t

Other Commands

Command
=n

Ct

Hn

Q

SHD
STOP

TR sw

w

Zt

Action

Repeat previous A, B, or E command

Set line number to n

Take commands from file t

Set halt at line n. If n =* then halt and unset h
Exit from command level; windup if at level 1
Show data

Stop

Set/unset trailing space removal

Windup

Set input terminator to string t

Appendix
Error Codes and Messages

The error messages that appear on the screen when you use the FAULT or
WHY command fall into two general categories:

1. user errors
2. programmer errors.

This appendix gives the probable cause and a suggestion for recovery for
each of these error codes. The codes appear in numerical order within their
category.

User Errors

103: insufficient free store

Probable cause:

You don’t have enough physical memory on the Amiga to carry this opera-
tion out.

Recovery suggestion:

First, try to stop some of the applications that are running that you don’t
need. For example, close any unnecessary windows. Otherwise, buy more
memory. Stop some of the tasks that are less important to you and reissue the
command. It may be that you have enough memory, but it has become
“fragmented”’; rebooting may help.

104: task table full

Probable cause:
Limited to 20 CLI tasks, or equivalent.

120: argument line invalid or too long

Probable cause:

Your argument for this command is incorrect or contains too many options.

Recovery suggestion:

Consult the command specifications in Chapter 2 of this manual for the
correct argument template.

148 AMIGADOS USER'S MANUAL

121: file is not an object module

Probable cause:

Either you misspelled the command name, or this file may not be in loadable
file form.

Recovery suggestion:

Either retype the file name, or make sure that the file is a binary program
file. Remember that in order to execute a command sequence the command
EXECUTE must be used before the file name.

122: invalid resident library during load

202: object in use

Probable cause:

The file or directory specified is already being used by another application in
a manner incompatible with the way you want to use it.

Recovery suggestion:

If another application is writing to a file, then nobody else can read from it. If
another application is reading from a file, then nobody else can write to it. If an
application is using a directory or reading from a file, then nobody else may
delete or rename the file or directory. You must stop the other application
using the file or directory and then try again.

203: object already exists

Probable cause:

The object name that you specified is that of an object that already exists.

Recovery suggestion:

You must first delete the directory or file if you really want to reuse that
name.

204: directory not found

205: object not found

Probable cause:

AmigaDOS cannot find the device or file you specified. You have probably
made a typographical or spelling error.

Recovery suggestion:

Check device names and filenames for correct spellings. You also get this
error if you attempt to create a file in a directory that does not exist.

206: invalid window

Probable cause:

You have either made the dimensions too big or too small, or you have failed
to define an entire window. (For example, you must not forget the final slash.)

APPENDIX: ERROR CODES AND MESSAGES 149

You can also get this error from NEWCLI if you supply a device name that is
not a window.

Recovery suggestion:

You should respecify the window.

210: invalid stream component name

Probable cause:

You have included an invalid character in the filename you have specified, or
the filename is too long. Each file or directory must be less than 30 characters
long. A filename cannot contain control characters.

212: object not of required type

Probable cause:

Maybe you've tried to do an operation that requires a filename and you gave
it a directory name or vice versa. For example, you might have given the
command TYPE dir, where “dir” is a directory. AmigaDOS doesn’t allow you
to display a directory, only files.

Recovery suggestion:

Check on the command usage in Chapter 2 of the AmigaDOS User’s Manual
in this book.

213: disk not validated

Probable cause:

Either you just inserted a disk and the disk validation process is in progress,
or it may be a bad disk.

Recovery suggestion:

Wait for the disk validation process to finish—it normally only takes less
than a minute. If AmigaDOS cannot validate the disk because it is bad, then
the disk remains unvalidated. In this case, you can only read from the disk and
you must copy your information onto another disk.

214: disk write-protected

Probable cause:

This disk is write-protected. The Amiga cannot write over information that is
already on the disk. You can only read information from this disk. You cannot
store any information of your own here.

Recovery suggestion:

Save your information on a disk that is not write-protected, or change the
write-protect tab on the disk.

215: rename across devices attempted
Probable cause:
RENAME only changes a filename on the same device, although you can use

150 AMIGADOS USER'S MANUAL

it to rename a file from one directory into another on the same device.
Recovery suggestion:
Copy the file to the object device and delete it from the source device.

216: directory not empty

Probable cause:

You cannot delete a directory unless it is empty.

Recovery suggestion:

Delete the contents of the directory. Study the command specification for
DELETE in Chapter 2 of this manual.

218: device not mounted

Probable cause:

The word “mounted” here means “inserted into the drive”; either you've
made a typographical error, or the disk with the desired name isn’'t mounted.

Recovery suggestion:

Check the spelling of the devices, or insert the correct disk.

220: comment too big

Probable cause:

Your filenote has exceeded the maximum number of characters allowed
(80).

Recovery suggestion:

Retype the filenote adhering to these limits.

221: disk full

Probable cause:

You do not have sufficient room on the disk to do this operation.
Recovery suggestion:

Use another disk or delete some unnecessary files or directories.

222: file is protected from deletion

Probable cause:

The file or directory has been protected from deletion.

Recovery suggestion:

You either did not mean to delete that file, or you really did mean it. If
you really did mean it, you must use the PROTECT command to alter the
protection status. Refer to the PROTECT command in Chapter 2. Also use
the LIST command to check on what the protections of this particular file or
disk are.

223: file is protected from writing
Probable cause:

APPENDIX: ERROR CODES AND MESSAGES 151

The file or directory has been protected from being overwritten.

Recovery suggestion:

You either did not mean to write to that file, or you really did mean it. If you
really did mean it, you must use the PROTECT command to alter the protec-
tion status. Refer to the PROTECT command in Chapter 2. Also use the
LIST command to check on the protections of this particular file or disk.

224: file is protected from reading

Probable cause:

The file or directory has been protected from being read.

Recovery suggestion:

You either did not mean to read from that file, or you really did mean it. If
you really did mean it, you must use the PROTECT command to alter the
protection status. Refer to the PROTECT command in Chapter 2. Also use the
LIST command to check on the protections of this particular file or disk.

225: not a DOS disk

Probable cause:

The disk in the drive is not a formatted DOS disk.

Recovery suggestion:

Place a suitably formatted DOS disk in the drive instead, or else format the
disk using the FORMAT command if you don’t want any of the information on
it.

226: no disk in drive

Probable cause:

You have attempted to read or write to a disk drive where there is no disk.
Recovery suggestion:

Place a suitably formatted DOS disk in the drive.

Programmer Errors

209: packet request type unknown

Probable cause:

You have asked a device handler to attempt an operation it cannot do (for
example, the console handler cannot rename anything).

Recovery suggestion:

Check the request code passed to device handlers.

211: invalid object lock
Probable cause:
You have used something that is not a valid lock.

152 AMIGADOS USER'S MANUAL

Recovery suggestion:
Check your code so that you only pass valid locks to AmigaDOS calls that
expect locks.

219: seek error

Probable cause:

You have attempted to call SEEK with invalid arguments.

Recovery suggestion:

Make sure that you only SEEK within the file. You cannot SEEK outside
the bounds of the file.

232: no more entries in directory

Probable cause:

There are no more entries in the directory that you are examining.

Recovery suggestion:

This error code indicates that the AmigaDOS call EXNEXT has no more
entries in the directory you are examining to hand back to you. Stop calling
EXNEXT.

Glossary

Arguments
Additional information supplied to commands.
Character pointer
Pointer to the left edge of a line window in EDIT. You use it to define the
part of a line that EDIT may alter.
Character string
Sequence of printable characters.
Command
An instruction you give directly to the computer.
Command Line Interface (CLI)
A process that decodes user input.
Console handler
See terminal handler.
Command template
The method of defining the syntax for each command.
Control combination
A combination of the CTRL key and a letter or symbol. The CTRL key is
pressed down while the letter or symbol is typed. It appears in the docu-
mentation, for example, in the form CTRL-A.
Current cursor position
The position the cursor is currently at.

APPENDIX: GLOSSARY 153

Current directory
This is either the root directory or the last directory you set yourself in with
the command CD.
Current drive
The disk drive that is inserted and declared to be current. The default is
5YS..
Current line
The line that EDIT has in its hand at any time.
Current string alteration command
An instruction that changes the current string.
Delimiter characters
Characters used at the beginning and end of a character string.
Destination file
File being written to.
Device name
Unique name given to a device, e.g. DF0: = floppy drive 0:.
Directory
A collection of files.
Editing commands
Commands input from the keyboard that control an editing session.
Extended mode
Commands appear on the command line and are not executed until you
finish the command line.
File
A collection of related data.
Filename
A name given to a file for identification purposes.
Immediate mode
Commands that are executed immediately.
Keyword
Arguments to commands that must be stated explicitly.
Line windows
Parts of a line for EDIT to execute subsequent commands on.
Memory
This is sometimes known as store and is where a computer stores its data
and instructions.
Multi-processing
The execution of two or more processes in parallel, that is, at the same
time.
Output queue
Buffer in memory holding data before being written out to file.
Priority
The relative importance of a process.

154 AMIGADOS USER’'S MANUAL

Process
A job requested by the operating system or the user.
Qualifiers
Characters that specify additional conditions for the context in string.
Qualified string
A string preceded by one or more qualifiers.
Queue
See Output queue.
Root directory
The top level in the filing system. Files and directories within the root
directory have their names preceded by a colon (:).
Sequential files
A file that can be accessed at any point by starting at the beginning and
scanning sequentially until the point is reached.
Source file
File being read from.
Syntax
The format or “‘grammar” you use for giving a command.
Terminal handler
A process handling input and output from the terminal or console.
Volume name
The unique name associated with a disk.
Wild card
Symbols used to match any pattern.

AmigaDOS Developer’s
Manual

Contents

1. Programming on the Amiga 157
2. Calling AmigaDOS 170
3. The Macro Assembler 186
4. The Linker 207

Appendix: Console Input and Output on the Amiga 218

Using Preferences

The default text size on the Amiga allows up to 60 characters per line in a
full-width CLI window. Many developers prefer to use 80 characters per line.
You can change the text style by using the Preferences tool from your Work-
bench disk; however, the new text width will not necessarily take effect on any
windows that you currently have opened. That is, any old windows in the
system remain with a text size of 60. To incorporate text size into the system,
you need to create a new window, select the old window, and finally delete
the old window.
Follow these steps:

1. Use the NEWCLI command.
2. Select the old window.
3. Use the ENDCLI command in the old window to delete the old window.

If you alter the CLI selection, the change may not take effect immediately. If
you save the new preferences and reboot, they take effect.

Chapter 1
Programming on the Amiga

This chapter introduces the reader to programming in C or Assembler under
AmigaDOS.

1.1 Introduction

1.2 Program Development for the Amiga

1.2.1 Getting Started

1.2.2 Calling Resident Libraries

1.2.3 Creating an Executable Program

1.3 Running a Program Under the CLI

1.3.1 Initial Environment in Assembler

1.3.2 Initial Environment in C

1.3.3 Failure of Routines

1.3.4 Terminating a Program

1.4 Running a Program Under the Workbench
1.5 Cross Development

1.5.1 Cross Development on a Sun Microsystem
1.5.2 Cross Development Under MS-DOS

1.5.3 Cross Development on Other Computers

1.1 Introduction

The AmigaDOS programming environment is available on the Amiga, Sun,
and IBM PC.

This manual assumes that you have some familiarity with either C or Assem-
bler. It does not attempt to teach either of these languages. An introduction to
C can be found in the book The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice Hall. There are a number of
books on writing 68000 assembler, including Programming the MC68000 by Tim
King and Brian Knight, published by Addison Wesley.

158 AMIGADOS DEVELOPER'S MANUAL

1.2 Program Development for the Amiga

This section describes how to develop programs for the Amiga. It describes
what you need before you start, how you can call the system routines, and
how to create a file that you can execute on the Amiga.

WARNING: Before you do ANYTHING, you should make a backup copy
of your system disk. For instructions, see the section, “Backing Up,” at
the beginning of the AmigaDOS User’s Manual in this book.

1.2.1 Getting Started

Before you start writing programs for the Amiga, you need the following
items:

1.

Documentation on AmigaDOS and other system routines that you can call.
For example, you need the AmigaDOS User’'s Manual, ROM Kernel Manual,
and possibly the AmigaDOS Technical Reference Manual as well.
Documentation on the language you intend to use. If you intend to use
Assembler or C, then this manual tells you how to use these tools although
it does not contain any specific information normally found in a language
reference manual.

Header files containing the necessary Amiga structure definitions and the
values for calling the sytem routines that you need. Commodore-Amiga
provides these header files as included files for either C (usually ending in .h)
or assembler (ending in .i). To use a particular resident library, you must
include one or more header files containing the relevant definitions. For
example, to use AmigaDOS from C, you must include the file “dos.h”.

An assembler or compiler either running on the Amiga itself or on one of
the cross development environments.

. The Amiga linker, again running on the Amiga or on another computer, as

well as the standard Amiga library containing functions, interface routines,
and various absolute values.
Tools to download programs if you are using a cross-development environment.

1.2.2 Calling Resident Libraries

You should note that there are two ways of calling system routines from a user
assembly program. C programmers simply call the function as specified. You
usually call a system routine in assembler by placing the library base pointer

PROGRAMMING ON THE AMIGA 159

for that resident library in register A6 and then jumping to a suitable negative
offset from that pointer. The offsets are available to you as absolute externals in
the Amiga library, with names of the form __LVOname. So, for instance, a call
could be JSR _LVOname(A6), where you have loaded A6 with a suitable library
base pointer. These base pointers are available to you from the OpenLibrary
call to Exec; you can find the base pointer for Exec at location 4 (the only
absolute location used in the Amiga). This location is also known as AbsExecBase
which is defined in Amiga.lib. (See the ROM Kernel Manual for further details
on Exec.)

You can call certain RAM-based resident libraries and the AmigaDOS library
in this way, if required. Note that the AmigaDOS library is called “dos.library”.
However, you do not need to use A6 to hold a pointer to the library base; you
may use any other register if you need to. In addition, you may call AmigaDOS
using the resident library call feature of the linker. In this case, simply code a
JSR to the entry point and the linker notes the fact that you have used a
reference to a resident library. When your code is loaded into-memory, the
loader automatically opens the library and closes it for you when you have
unloaded. The loader automatically patches references to AmigaDOS entry
points to refer to the correct offset from the library base pointer.

1.2.3 Creating an Executable Program

To produce a file that you can execute on the Amiga, you should follow the four
steps below. You can do each step either on the Amiga itself or on a suitable
cross-development computer.

1. Get your program source into the Amiga. To do this, you can type it directly
in using an editor, or you can transfer it from another computer. Note that
you can use the READ and DOWNLOAD programs on the Amiga to
transfer character or binary files.

Assemble or compile your program.

Link your program together, including any startup code you may require
at the beginnning, and scan the Amiga library and any others you may need
to satisfy any external references.

4. Load your program into the Amiga and watch it run!

Sl

1.3 Running a Program Under the CLI

There are two ways you can run a program. First, you can run your program

under a CLI (Command Line Interface). Second, you can run your program

under the Workbench. This section describes the first of the two ways.
Running a program under the CLI is a little like using an old-fashioned

160 AMIGADOS DEVELOPER’S MANUAL

line-oriented TTY system although you might find a CLI useful, for example, to
port your program over to your Amiga as a first step in development. To load
and enter your program, you simply type the name of the file that contains the
binary and possibly follow this with a number of arguments.

1.3.1 Initial Environment in Assembler

When you load a program under a CLI, you type the name of the program and
a set of arguments. You may also specify input or output redirection by means
of the “>" and “’<” symbols. The CLI automatically provides all this informa-
tion for the program when it starts up.

When the CLI starts up a program, it allocates a stack for that program. This
stack is initially 4000 bytes, but you may change the stack size with the STACK
command. AmigaDOS obtains this stack from the general free memory heap just
before you run the program; it is not, however, the same as the stack that the
CLI uses. AmigaDOS pushes a suitable return address onto the stack that tells
the CLI to regain control and unload your program. Below this on the stack at
4(SP) is the size of the stack in bytes, which may be useful if you wish to
perform stack checking.

Your program starts with register A0 pointing to the arguments you, or
anyone else running your program typed. AmigaDOS stores the argument line
in memory within the CLI stack and this pointer remains valid throughout
your program. Register DO indicates the number of characters in the argument
line. You can use these initial values to decode the argument line to find out what
the user requires. Note that all registers may be corrupted by a user program.

To make the initial input and output file handles available, you call the
AmigaDOS routines Input() and Output(). Remember that you may have to
open the AmigaDOS library before you do this. The calls return file handles
that refer to the standard input and output the user requires. This standard
input and output is usually the terminal unless you redirected the VO by
including “>"" or “<” on the argument line. You should not close these file
handles with your program; the CLI opened them for you and it will close
them, if required.

1.3.2 Initial Environment in C

When programming in C, you should always include the startup code as the
first element in the linker input. This means that the linker enters your
program at the startup code entry point. This section of code scans the argu-
ment list and makes the arguments available in “argv”, with the number of
arguments in “argc” as usual. It also opens the AmigaDOS library and calls
Input() and Output() for you, placing the resulting file handles into “stdin’” and
“stdout”. It then calls the C function “main”.

PROGRAMMING ON THE AMIGA 161

1.3.3 Failure of Routines

Most AmigaDOS routines return a zero if they fail; the exceptions are the Read
and Write calls that return -1 on finding an error. If you receive an error return,
you can call IoErr() to obtain more information on the failure. [oErr() returns an
integer that corresponds to a full error code, and you may wish to take
different actions depending on exactly why the call failed. A complete list of
error codes and messages can be found at the end of the AmigaDOS User’s
Manual in this book.

1.3.4 Terminating a Program

To exit from a program, it is sufficient to give a simple RTS using the initial
stack pointer (SP). In this case, you should provide a return code in register
DO. This is zero if your program succeeded; otherwise, it is a positive number.
If you return a nonzero number, then the CLI notices an error. Depending on
the current fail value (set by the command FAILAT), a noninteractive CLI,
such as one running a command sequence set up by the EXECUTE command,
terminates. A program written in C can simply return from “main” which
returns to the startup code; this clears DO and performs an RTS.

Alternatively a program may call the AmigaDOS function Exit, which takes
the return code as argument. This instructs your program to exit no matter what
value the stack pointer has.

It is important at this stage to stress that AmigaDOS does not control any
resources; this is left entirely up to the programmer. Any files that a user
program opens must be closed before the program terminates. Likewise, any
locks it obtains must be freed, any code it loads must be unloaded, and any
memory it allocates returned. Of course, there may be cases where you do not
wish to return all resources, for example, when you have written a program
that loads a code segment into memory for later use. This is perfectly accept-
able, but you must have a mechanism for eventually returning any memory,
file locks, and so on.

1.4 Running a Program Under the Workbench

To run a program under the Workbench, you need to appreciate the different
ways in which a program may be run on the Amiga. Under the CLI your
program is running as part of the CLI process. It can inherit I/O streams and
other information from the CLI, such as the arguments you provided.

If a program is running under the Workbench, then AmigaDOS starts it as a
new process running at the same time as Workbench. Workbench loads the
program and then sends a message to get it started. You must therefore wait

162 AMIGADOS DEVELOPER’S MANUAL

for this initial message before you start to do anything. You must retain the
message and return it to Workbench when your program has finished, so that
Workbench can unload the code of your program.

For C programmers, this is all done by simply using a different startup
routine. For assembly language programmers, this work must be done yourself.

You should also note that a program running as a new process initiated by
Workbench has no default input and output streams. You must ensure that
your program opens all the I/O channels that it needs, and that it closes them
all when it has finished.

1.5 Cross Development

If you are using a cross-development environment, then you need to download
your code onto the Amiga. This section describes the special support
Commodore-Amiga gives to Sun Microsystem and MSDOS environments. It
also describes how to cross-develop in other environments without this special
support.

1.5.1 Cross Development on a Sun Microsystem

The tools available on the Sun Microsystem for cross development include the
assembler, linker, and two C compilers. The argument formats of the assem-
bler and linker on the Sun Microsystem are identical to those on the Amiga
when running under the CLL. The Greenhills C compiler is only available on
the Sun Microsystem and is described here.

The compiler is called metacc, and it accepts several types of files. It
assumes that filenames ending in .c represent C source programs. The com-
piler then compiles these .c files and places the resulting object program
in the current directory with the same filename, but ending with .obj. The
suffix .obj denotes an object file. The compiler assumes that files ending
in .asm are assembly source programs. You can use the assembler to
assemble these and produce an object file (ending with .obj) in the current
directory.

The compiler metacc takes many options with the following format:

metacc [<optl>[,<opt2>[,..<optn>]]][<file>[,...<filen>]]
The options available are as follows:
-C -g -go -w -p -pg -O[<optflags>] -fsingle

-S -E -C -X70 -0 <output> -D <name = def>
-U <name> -I <dir> -B <string> -t[p012]

PROGRAMMING ON THE AMIGA 163

The following options instruct metacc to:

-C

8

-O[<optflags>]

-fsingle

just compile the program, suppressing the loading phase of
the compilation, and forcing an object file to be produced
even if it only compiles one program.

produce additional symbol table information for the debug-
ger dbx and to pass the -lg flag to 1d.

produce additional symbol table information in an older
format set by the adb debugger. Also, pass the -lg flag
to Id.

suppress all warning messages.

produce profiling code to count the number of times each
routine is called. If loading takes place, replace the standard
startup routine by one that is automatically called by the
monitor and uses a special profiling library instead of the
standard C library.

Use the prof program to generate an execution profile.

produce profiling code like -p, but invoke a run-time re-
cording mechanism that keeps more extensive statistics and
produces a gmon.out file at normal termination.

Use the gprof program to generate an execution profile.

use the object code optimizer to improve the generated
code.

If “optflags” appears, you include <optflags> in the com-
mand line to run the optimizer. You can use -O to pass
option flags.

use single-precision arithmetic in computations involving
only flo at numbers; that is, do not convert everything to
double (that is, the default).

Note: Floating-point parameters are still converted to double-
precision, and functions that return values still return double-
precision values.

diate values.

WARNING: Certain programs run much faster using the -fsingle option,
but beware that you can lose significance due to lower precision interme-

AMIGADOS DEVELOPER'S MANUAL

-0 <output>
-D<name =def>

-U<name>

-I<dir>

-B<string>

-t[p012]

compile the specified C program(s) and leave the assembler-
language output on corresponding files ending with .obj.

run only the C preprocessor on the named C program(s) and
send the result to the standard output.

prevent the C preprocessor from removing comments.

generate code using Amiga floating point format. This code
is compatible with the floating point math ROM library
provided on the Amiga.

name the final output file “output”. If you use this option,
the file a.out is left undisturbed.

define “name” to the preprocessor, as if by #define. If no
definition is given, define the name as “1”.

remove any initial definition of ‘‘name”’.

always look for #include files whose names do not begin
with “/”” first in the directory of the <file> argument, then
look in the <dir> specified in the -I option, and finally look
in the /usr/include directory.

find substitute compiler passes in the files specified by
<string> with the endings cpp, ccom, and 2. If “string” is
empty, use a backup version.

find only the designated compiler passes in the files whose
names are constructed by a -B option. In the absence of a -B
option, assume <string™> to be /usr/newy/.

The letter and number combinations that you can specify for
the -t option have the following meanings:

p cpp—the C preprocessor

0 metacom—both phases of the C compiler, but not the
optimizer.

1 Ignored in this system—this option would be for the
second phase of a two-phase compiler but in the Sun
system; ccom includes both phases.

2 2—the object code optimizer.

The compiler metacc assumes that other arguments are loaded option argu-
ments, object programs, or libraries of object programs. Unless you specify -c,
-5, or -E, metacc loads these programs and libraries together with the results of
any compilations or assemblies specified, (in the order given) to produce an

PROGRAMMING ON THE AMIGA 165

executable program named a.out. To override the name a.out, you can use the

loader’s -0 <name> option.

If a single C program is compiled and loaded all at once, the intermediate .0

file is deleted.

Figure 1-A lists the filenames of special metacc files and their descriptions.

Special Files

File Description

C source code

Assembler source file
Object file

Library of object files
Executable output files
Temporary files
Preprocessor

Compiler

Optional optimizer
Runtime startoff

Startoff for profiling
Startoff for gprof-profiling
Standard library

Profiling library

Standard directory (#include.
Files produced for analysis
by prof

File produced for analysis

by gprof

Filename
file.c

file.asm

file.o

file.lib

a.out
/tmp/ctm
flib/cpp
/lib/ccom
/lib/c2
/Nlib/crt0.0
/lib/mcrt0.0
fusr/lib/gcrt0.0
/lib/libc.a
fusr/lib/libc__p.a
/usr/include

mon.out

gmon.out

Figure 1.A: Special metacc Filenames

You can download the files you produce from the linker on the Sun to your
Amiga in three ways: the first, and by far the easiest, requires a BillBoard; the
second requires a parallel port; and the third requires a serial line.

If you have the special hardware device called a BillBoard, you can
download your linked load file (by convention this should end with .I1d) as

follows:

1. Startup the program “binload” on the Sun

binload -p &

(this need only be done once)

166 AMIGADOS DEVELOPER’'S MANUAL

2. Then on the Amiga, type

download <sun filename> <amiga filename>
3. To run the program, type

<amiga filename>

For example:
On the Sun, type

binload -p &
On the Amiga, type

download test.ld test
or type

download /usr/commodore/amiga/Va4/examples/DOS/test.ld test
then type

test

Note that DOWNLOAD gains access to files on the Sun relative to the
directory where binload started. If the directory on the Sun was /usr/commodore/
amiga/V24/examples/DOS as above, the filename test.ld is all that is necessary.
If you cannot remember the directory where binload started, you must specify
the full name. To stop binload, do a “ps” and then a “kill” on its PID. Note
that the soft reset of the computer tells binload to write a message to its
standard output (the default is the window where it started). If the transfer
hangs, press CTRL-C at the Amiga to kill DOWNLOAD. (See Section 3.2 in the
AmigaDOS User’s Manual in this book for further information on the AmigaDOS
control conventions CTRL-C, CTRL-D, CTRL-E, and CTRL-F.)

If you do not have a BillBoard, you can download files through a parallel
port. To do this, follow these steps:

1. Send the download ASCII files to the Amiga via the parallel port by
typing

send demo.ld

PROGRAMMING ON THE AMIGA 167

1.

If you do not give “send” any arguments, the standard input is used. The
default output device is /dev/lp0, which is usually correct. To change the
default output, use the -o argument.

On the Amiga, type the following:

READ demo

READ then reads characters from the parallel port and places them in the
file named “demo”.

. Once READ has finished, type

demo

to run the program demo.

You can also download files serially. To do this, follow these steps:

Convert the Binary Load File into an ASCII hex file ending with Q by typing
convert <demo.ld >demo.dl
(where .dl, by convention, stands for DownLoad). The above rule exists in

the included makefile, makeamiga. (See the AmigaDOS Technical Reference
Manual, Chapter 2, for further details on the Amiga Binary Load files.)

Type

tip amiga

. On the Amiga, type

READ demo serial
Within tip, type

"> demo.dl

. When the READ completes on the Amiga, type the filename “demo” to run
it.

WARNING: The Sun serial link often hangs for no apparent reason.
Reboot the Sun if this happens.

168 AMIGADOS DEVELOPER’S MANUAL

If the Sun serial link should happen to hang, reboot the Sun, then type
tip

and within tip, type
Q

to get the READ on the Amiga to complete. Once this is done, start a new
READ and type the following symbols on the Sun:

>

1.5.2 Cross Development Under MS-DOS

To cross-develop on a computer running MS-DOS for your Amiga, you need
various tools that are supplied in the directory \V25\bin. These include the C
compiler, assembler, and linker as well as commands to assist in downloading.
You use the same syntax for the tools running under MS-DOS as under the CLI
on the Amiga.

To download via an IBM PC serial port (called AUX), follow these steps:

1. Type on your Amiga
READ file SERIAL
2. On the PC, type
convert <fileld >AUX:
3. On your Amiga, you can now type
file
to the program.

1.5.3 Cross Development on Other Computers

You'll need to have a suitable cross compiler or assembler, and to include
files defining all the entry points. You'll also need either the Amiga linker
ALINK running on your equipment or on the Amiga. Finally you’ll need a way
to convert a binary file into a hexadecimal stream terminated with a Q (as this

file:///V25/bin

PROGRAMMING ON THE AMIGA 169

is the way that READ accepts data), and a way of putting this data out from a
serial or parallel port.

Once you have created a suitable binary file, you must transfer this to the
Amiga using the READ command (as described in Section 1.5.2 of this man-
ual). If you have the Amiga linker running on your computer, then you can
transfer complete binary load files; otherwise, you'll have to transfer binary
object files in the format accepted by ALINK, and then perform the link step
on the Amiga.

Chapter 2
Calling AmigaDOS

This chapter describes the functions provided by the AmigaDOS resident
library. To help you, it provides the following: an explanation of the syntax, a full
description of each function, and a quick reference card of the available functions.

2.1 Syntax
2.2 AmigaDOS Functions
Quick Reference Card

2.1 Syntax

The syntax used in this chapter shows the C function call for each AmigaDOS
function and the corresponding register you use when you program in assembler.

2.1.1 Register Values

The letter/number combination (D0. . .Dn) represents registers. The text to the

left of an equals sign represents the result of a function. A register (that is, D0)

appearing under such text indicates the register value of the result. Text to the

right of an equals sign represents a function and its arguments, where the text

enclosed in parentheses is a list of the arguments. A register (for example, D2)

appearing under an argument indicates the register value of that argument.
Note that not all functions return a result.

2.1.2 Case

The letter case (that is, lower or upper case) IS significant. For example, you
must enter the word “FileInfoBlock” with the first letter of each component
word in upper case.

CALLING AMIGADOS 171

2.1.3 Boolean returns
-1 (TRUE or SUCCESS), 0 (FALSE or FAILURE).

2.1.4 Values

All values are long words (that is, 4 byte values or 32 bits). Values referred to as
“string”’ are 32-bit pointers to NULL-terminated series of characters.

2.1.5 Format, Argument, and Result

Look at “Argument:”” and “Result:” for further details on the syntax used
after “Format:”. Result describes what is returned by the function (that is,
the left of the equal sign). Argument describes what the function expects to
work on (that is, the list in parentheses). Figure 2-A should help explain the
syntax.

Format of function result = Function(argument)
Register Register
Example lock = CreateDir(name)
DO D1

Figure 2-A: Format of Functions and Registers

2.2 AmigaDOS Functions

This reference section describes the functions provided by the AmigaDOS
resident library. Each function is arranged alphabetically under the following
headings: File Handling, Process Handling, and Loading Code. These head-
ings indicate the action of the functions they cover. Under each function name,
there is a brief description of the function’s purpose, a specification of the
format and the register values, a fuller description of the function, and an
explanation of the syntax of the arguments and result. To use any of these
functions, you must link with amiga.lib.

File Handling

Close

Purpose: To close a file for input or output.
Form: Close(file)
D1

172 AMIGADOS DEVELOPER'S MANUAL

Argument: file—file handle

Description:

The file handle “file” indicates the file that Close should close. You obtain this
file handle as a result of a call to Open. You must remember to close explicitly
all the files you open in a program. However, you should not close inherited
file handles opened elsewhere.

CreateDir
Purpose: To create a new directory.
Form: lock = CreateDir(name)
DO D1
Argument: name-string
Result: lock - pointer to a lock
Description:

CreateDir creates a new directory with the name you specified, if possible. It
returns an error if it fails. Remember that AmigaDOS can only create directo-
ries on devices which support them, for example, disks.

A return of zero means that AmigaDOS has found an error (such as: disk
write protected), you should then call IoErr(); otherwise, CreateDir returns a
shared read lock on the new directory.

CurrentDir
Purpose: To make a directory associated with a lock the current working
directory.
Form: oldLock = CurrentDir(lock)
Do D1

Argument: lock - pointer to a lock
Result: oldLock - pointer to a lock
Description:
CurrentDir makes current a directory associated with a lock. (See also LOCK.)
It returns the old current directory lock.

A value of zero is a valid result here and indicates that the current directory
is the root of the initial startup disk.

DeleteFile

Purpose: To delete a file or directory.
Form: success = DeleteFile(name)
Do D1

CALLING AMIGADOS 173

Argument: name - string

Result: success - boolean

Description:

DeleteFile attempts to delete the file or directory “name”. It returns an error if
the deletion fails. Note that you must delete all the files within a directory
before you can delete the directory itself.

DupLock

Purpose: To duplicate a lock.
Form: newLock = DupLock(lock)
DO D1
Argument: lock - pointer to a lock
Result: newLock - pointer to a lock
Description:
DupLock takes a shared filing system read lock and returns another shared
read lock to the same object. It is impossible to create a copy of a write lock.
(For more information on locks, see LOCK.)

Examine
Purpose: To examine a directory or file associated with a lock.
Form: success = Examine(lock, FileInfoBlock)
DO D1 D2

Arqument: lock - pointer to a lock

FileInfoBlock - pointer to a file info block
Result: success - boolean
Description:
Examine fills in information in the FileInfoBlock concerning the file or directory
associated with the lock. This information includes the name, size, creation
date, and whether it is a file or directory.

Note: FileInfoBlock must be longword aligned. You can ensure this in the
C language if you use Allocmem. (See the ROM Kernal Manual for further
details on the exec call Allocmem.)

Examine gives a return code of zero of it fails.

ExNext

Purpose: ~ To examine the next entry in a directory.
Form: success = ExNext(lock, FileInfoBlock)
DO D1 D2

174 AMIGADOS DEVELOPER’S MANUAL

Argument: lock - pointer to a lock

FileInfoBlock - pointer to a file info block
Result: success - boolean
Description:
This routine is passed a lock, usually associated with a directory, and a
FileInfoBlock filled in by a previous call to Examine. The FileInfoBlock contains
information concerning the first file or directory stored in the directory associ-
ated with the lock. ExNext also modifies the FileInfoBlock so that subsequent
calls return information about each following entry in the directory.

ExNext gives a return code of zero if it fails for some reason. One reason for
failure is reaching the last entry in the directory. However, loErr() holds a code
that may give more information on the exact cause of a failure. When ExNext
finishes after the last entry, it returns ERROR_NO_ MORE__ENTRIES

So, follow these steps to examine a directory:

1) Use Examine to get a FileInfoBlock about the directory you wish to
examine.

2) Pass ExNext the lock related to the directory and the FileInfoBlock filled in
by the previous call to Examine.

3) Keep calling ExNext until it fails with the error code held in IoErr() equal
to ERROR_NO__MORE__ENTRIES.

4) Note that if you don’t know what you are examining, inspect the type
field of the FileInfoBlock returned from Examine to find out whether it is a
file or a directory which is worth calling ExNext for.

The type field in the FileInfoBlock has two values: if it is negative, then
the file system object is a file; if it is positive, then it is a directory.

Info
Purpose: Returns information about the disk.
Form: success = Info(lock, Info__Data)
DO D1 D2

Argument: lock - pointer to a lock

Info._Data - pointer to an Info_Data structure
Result: success - boolean
Description:
Info finds out information about any disk in use. “lock” refers to the disk, or
any file on the disk. Info returns the Info__Data structure with information
about the size of the disk, number of free blocks, and any soft errors. Note that
Info__Data must be longword aligned.

CALLING AMIGADOS 175

Input
Form: file = Input ()
DO
Result: file - file handle
Description:

To identify the program’s initial input file handle, you use Input. (To identify
the initial output, see OUTPUT.)

IoErr

Purpose: To return extra information from the system.

Form: error = IoErr()
DO

Result: error - integer

Description:

I/O routines return zero to indicate an error. When an error occurs, call this
routine to find out more information. Some routines use IoErr(), for example,
DeviceProc, to pass back a secondary result.

IsInteractive
Purpose: To discover whether a file is connected to a virtual terminal or not.
Form: bool = IsInteractive(file)
DO D1
Argument: file - file handle
Result: bool - boolean
Description:

The function IsInteractive gives a boolean return. This indicates whether
or not the file associated with the file handle “file” is connected to a virtual
terminal.

Lock

Purpose: To lock a directory or file.
Form: lock = Lock(name, accessMode)
DO D1 D2
Argument: name-string
accessMode - integer
Result: lock - pointer to a lock

176 AMIGADOS DEVELOPER'S MANUAL

Description:

Lock returns, if possible, a filing system lock on the file or directory “name”. If
the accessMode is ACCESS_READ, the lock is a shared read lock; if the
accessMode is ACCESS__WRITE, then it is an exclusive write lock. If LOCK fails
(that is, if it cannot obtain a filing system lock on the file or directory) it returns
a zero.

Note that the overhead for doing a Lock is less than that for doing an
Open, so that, if you want to test to see if a file exists, you should use
Lock. Of course, once you've found that it exists, you have to use Open to
open it.

Open

Purpose: To open a file for input or output
Form: file = Open(name, accessMode)

DO D1 D2
Argument: name - string accessMode - integer
Result: file - file handle
Description:
Open opens “name” and returns a file handle. If the accessMode is MODE__
OLDFILE (=1005), OPEN opens an existing file for reading or writing. How-
ever, Open creates a new file for writing if the value is MODE__NEWFILE
(=1006). The “name” can be a filename (optionally prefaced by a device name),
a simple device such as NIL:, a window specification such as CON: or RAW:
followed by window parameters, or *, representing the current window.

For further details on the devices NIL:, CON:, and RAW:, see Chapter 1 of
the AmigaDOS User’s Manual in this book. If Open cannot open the file “‘name’*
for some reason, it returns the value zero (0). In this case, a call to the routine
IoErr() supplies a secondary error code.

For testing to see if a file exists, see LOCK.

Output

Form: file = QOutput()
DO

Result: file - file handle

Description:

To identify the program’s initial output file handle, you use Output. (To
identify the initial input, see INPUT.)

CALLING AMIGADOS 177

ParentDir
Purpose: To obtain the parent of a directory or file.
Form: Lock = ParentDir(lock)
DO D1
Argument: lock - pointer to a lock
Result: lock - pointer to a lock
Description:

This function returns a lock associated with the parent directory of a file or
directory. That is, ParentDir takes a lock associated with a file or directory and
returns the lock of its parent directory.

Note: The result of ParentDir may be zero (0) for the root of the current filing
system.

Read

Purpose: To read bytes of data from a file.
Form: actualLength = Read(file, buffer, length)

DO D1 D2 D3
Argument: file - file handle

buffer - pointer to buffer

length - integer
Result: actualLength - integer
Description:
You can copy data with a combination of Read and Write. Read reads bytes of
information from an opened file (represented here by the argument “file”’) into
the memory buffer indicated. Read attempts to read as many bytes as fit into
the buffer as indicated by the value of length. You should always make sure
that the value you give as the length really does represent the size of the
buffer. Read may return a result indicating that it read less bytes than you
requested, for example, when reading a line of data that you typed at the
terminal.

The value returned is the length of the information actually read. That is to
say, when “actualLength” is greater than zero, the value of “actualLength” is
the number of characters read. A value of zero means that end-of-file has been
reached. Errors are indicated by a value of 1. Read from the console returns a
value when a return is found or the buffer is full.

A call to Read also modifies or changes the value of IoErr(). IoErr() gives
more information about an error (for example, actualLength equals -1) when it
is called.

178 AMIGADOS DEVELOPER'S MANUAL

Rename
Purpose: To rename a directory or file.
Form: success = Rename(oldName, newName)
DO D1 D2

Argument: oldName - string

newName - string
Result: success - boolean
Description:
Rename attempts to rename the file or directory specified as “oldName” with
the name “‘newName”. If the file or directory “newName’” exists, Rename fails
and Rename returns an error.

Both the “oldName” and the “newName” can be complex filenames contain-
ing a directory specification. In this case, the file will be moved from one
directory to another. However, the destination directory must exist before you
do this.

Note: It is impossible to rename a file from one volume to another.

Seek

Purpose: To move to a logical position in a file.
Form: oldPosition = Seek(file, position, mode)

DO D1 D2 D3
Argument: file - file handle

position - integer

mode - integer
Result: oldPosition - integer
Description:
Seek sets the read/write cursor for the file ““file” to the position “position”. Both
Read and Write use this position as a place to start reading or writing. If all
goes well, the result is the previous position in the file. If an error occurs, the
result is -1. You can then use IoErr() to find out more information about the
error.

“Mode”" can be OFFSET__BEGINNING (=1), OFFSET_CURRENT (=0) or
OFFSET__END (=1). You use it to specify the relative start position. For exam-
ple, 20 from current is a position twenty bytes forward from current, -20 from
end is 20 bytes before the end of the current file.

To find out the current file position without altering it, you call to Seek
specifying an offset of zero from the current position.

To move to the end of a file, Seek to end-of-file offset with zero position.
Note that you can append information to a file by moving to the end of a file
with Seek and then writing. You cannot Seek beyond the end of a file.

CALLING AMIGADOS 179

SetComment
Purpose: To set a comment.
Form: Success = SetComment(name, comment)
DO D1 D2

Argument: name - file name
comment - pointer to a string
Result: success - boolean
Description:
SetComment sets a comment on a file or directory. The comment is a pointer to
a null-terminated string of up to 80 characters.

SetProtection
Purpose: To set file, or directory, protection.
Form: Success = SetProtection(name, mask)
DO D1 D2

Argument: name - file name
mask - the protection mask required

Result: success - boolean
Description:
SetProtection sets the protection attributes on a file or directory. The lower
four bits of the mask are as follows:

bit 3: if 1 then reads not allowed, else reads allowed.

bit 2: if 1 then writes not allowed, else writes allowed.

bit 1: if 1 then execution not allowed, else execution allowed.

bit 0: if 1 then deletion not allowed, else deletion allowed.

Bits 31-4 Reserved.

Only delete is checked for in the current release of AmigaDOS. Rather than
referring to bits by number you should use the definitions in “include/libraries/
dos.h”.

UnLock

Purpose: To unlock a directory or file.
Form: Unlock(lock)
D1

Argument: lock - pointer to a lock

180 AMIGADOS DEVELOPER’S MANUAL

Description:
UnLock removes a filing system lock obtained from Lock, DupLock, or
CreateDir.

WaitForChar

Purpose: To indicate whether characters arrive within a time limit or not.
Form: bool = WaitForChar(file, timeout)

DO D1 D2
Argument: file - file handle

timeout - integer
Result: bool - boolean
Description:
If a character is available to be read from the file associated with the handle
“file’” within a certain time, indicated by “timeout”, WaitForChar returns -1
(TRUE); otherwise, it returns 0 (FALSE). If a character is available, you can
use Read to read it. Note that WaitForChar is only valid when the /O
streams are connected to a virtual terminal device. “Timeout” is specified in
microseconds. ‘

Write

Purpose: To write bytes of data to a file.
Form: returnedLength = Write(file, buffer, length)
DO D1 D2 D3
Argument: file - file handle
buffer - pointer to buffer
length - integer
Result: returnedLength - integer
Description:
You can copy data with a combination of Read and Write. Write writes bytes of
data to the opened file “file”’; “length” refers to the actual length of data to be
transferred; “‘buffer’” refers to the buffer size.

Write returns a value that indicates the length of information actually writ-
ten. That is to say, when “length” is greater than zero, the value of “length” is
the number of characters written. A value of -1 indicates an error. The user of
this call must always check for an error return which may, for example,
indicate that the disk is full.

CALLING AMIGADOS 181

Process Handling

CreateProc
Purpose: To create a new process.
Form: process = CreateProc(name, pri, segment, stackSize)
Do D1 D2 D3 D4

Argument: name - string

pri - integer

segment - pointer to a segment

stackSize - integer
Result: process - process identifier
Description:
CreateProc creates a process with the name “‘name”. That is to say, CreateProc
allocates a process control structure from the free memory area and then
initializes it.

CreateProc takes a segment list as the argument ““segment”. (See also under
LOADSEG and UNLOADSEG.) This segment list represents the section of
code that you intend to run as a new process. CreateProc enters the code at the
first segment in the segment list, which should contain suitable initialization
code or a jump to such.

““StackSize” represents the size of the root stack in bytes when CreateProc
activates the process. “Pri” specifies the required priority of the new process.
The result is the process identifier of the new process, or zero if the routine
failed.

The argument “‘name” specifies the process name.

A zero return code implies an error of some kind.

DateStamp

Purpose: To obtain the date and time in internal format.

Form: v:= DateStamp(v)
Argument: v - pointer
Description:

DateStamp takes a vector of three long words that is set to the current time.
The first element in the vector is a count of the number of days. The second
element is the number of minutes elapsed in the day. The third is the number
of ticks elapsed in the current minute. A tick happens 50 times a second.
DateStamp ensures that the day and minute are consistent. All three elements
are zero if the date is unset. DateStamp currently only returns even multiples
of 50 ticks. Therefore the time you get is always an integral number of seconds.

182 AMIGADOS DEVELOPER'S MANUAL

Delay

Purpose: To delay a process for a specified time.
Form: Delay(timeout)
D1
Argument: timeout - integer
Description:
The function Delay takes an argument “timeout”; “timeout” allows you to
specify how long the process should wait in ticks (50 per second).

DeviceProc
Purpose: To return the process identifier of the process handling that V/O.
Form: process = DeviceProc(name)
DO D1
Argument: name - string
Result: process - process identifier
Description:

DeviceProc returns the process identifier of the process that handles the
device associated with the specified name. If DeviceProc cannot find a process
handler, the result is zero. If “name” refers to a file on a mounted device, then
IoErr() returns a pointer to a directory lock.

You can use this function to determine the process identification of the
handler process where the system should send its messages.

Exit

Purpose: To exit from a program.
Form: Exit(returnCode)
D1

Argument: returnCode - integer
Description:
Exit acts differently depending on whether you are running a program under a
CLI or not. If you run, as a command under a CLI, a program that calls Exit,
the command finishes and control reverts to the CLI. Exit then interprets the
argument “returnCode’ as the return code from the program.

If you run the program as a distinct process, Exit deletes the process
and releases the space associated with the stack, segment list, and process
structure.

CALLING AMIGADOS 183

Loading Code

Execute
Purpose: To execute a CLI command.
Form: Success = Execute(commandString, input, output)
DO D1 D2 D3

Argument: commandString - string

input - file handle

output - file handle
Result: Success - boolean
Description:
This function takes a string (commandString) that specifies a CLI command
and arguments, and attempts to execute it. The CLI string can contain any
valid input that you could type directly at a CLI, including input and output
indirection using > and <.

The input file handle will normally be zero, and in this case the EXECUTE
command will perform whatever was requested in the commandString and
then return. If the input file handle is nonzero then after the (possibly null)
commandString is performed subsequent input is read from the specified input
file handle until end of file is reached.

In most cases the output file handle must be provided, and will be used by
the CLI commands as their output stream unless redirection was specified. If
the output file handle is set to zero then the current window, normally
specified as *, is used. Note that programs running under the Workbench do
not normally have a current window.

The Execute function may also be used to create a new interactive CLI
process just like those created with the NEWCLI function. In order to do this
you should call Execute with an empty commandString, and pass a file handle
relating to a new window as the input file handle. The output file handle
should be set to zero. The CLI will read commands from the new window, and
will use the same window for output. This new CLI window can only be
terminated by using the ENDCLI command. For this command to work the
program C:RUN must be present in C:.

LoadSeg

Purpose: To load a load module into memory.
Form: segment = LoadSeg(name)

DO D1
Argument: name - string

184 AMIGADOS DEVELOPER’S MANUAL

Result: segment - pointer to a segment

Description:

The file “name” is a load module produced by the linker. LoadSeg takes this
and scatter-loads the code segments into memory, chaining the segments
together on their first words. It recognizes a zero as indicating the end of the
chain.

If an error occurs, LoadSeg unloads any loaded blocks and returns a false
(zero) result.

If all goes well (that is, LoadSeg has loaded the module correctly), then
Loadseg returns a pointer to the beginning of the list or blocks. Once you have
finished with the loaded code, you can unload it with a call to UnLoadSeg. (For
using the loaded code, see CREATEPROC.)

UnLoadSeg

Purpose: To unload a segment previously loaded by LOADSEG.

Form: UnLoadSeg(segment)

D1
Argument: segment - pointer to a segment
Description:

UnLoadSeg unloads the segment identifier that was returned by LoadSeg.
“segment’’ may be zero.

Quick Reference Card

File Handling

Close to close a file for input or output.

CreateDir to create a new directory.

CurrentDir to make a directory associated with a lock the current working
directory.

DeleteFile to delete a file or directory.

DupLock to duplicate a lock.

Examine to examine a directory or file associated with a lock.

ExNext to examine the next entry in a directory.

Info to return information about the disk.

Input to identify the initial input file handle.

IoErr to return extra information from the system.

IsInteractive to discover whether a file is connected to a virtual terminal
or not.

Lock to lock a file or directory.

CALLING AMIGADOS 185

Open
Output
ParentDir
Read
Rename
Seek
SetComment
SetProtection
Unlock
WaitForChar

Write

to open a file for input or output.

to identify the initial output file handle.
to obtain the parent of a directory or file.
to read bytes of data from a file.

to rename a file or directory.

to move to a logical position in a file.

to set a comment.

to set file, or directory, protection.

to unlock a file or directory.

to indicate whether characters arrive within a time limit or
not.

to write bytes of data to a file.

Process Handling

CreateProc
DateStamp
Delay
DeviceProc
Exit

to create a new process.

to obtain the date and time in internal format.

to delay a process for a specified time.

to return the process identifier of the process handling that I/O.
to exit from a program.

Loading Code

Execute
LoadSeg
UnloadSeg

to execute a CLI command.
to load a load module into memory.
to unload a segment previously loaded by LOADSEG.

Chapter 3
The Macro Assembler

This chapter describes the AmigaDOS Macro Assembler. It gives a brief intro-
duction to the 68000 microchip. This chapter is intended for the reader who is
acquainted with an assembly language on another computer.

3.1 Introduction to the 68000 Microchip
3.2 Calling the Assembler

3.3 Program Encoding

3.3.1 Comments

3.3.2 Executable Instructions
3.3.2.1 Label Field

3.3.2.2 Local Labels

3.3.2.3 Opcode Field

3.3.2.4 Operand Field

3.3.2.5 Comment Field

3.4 Expressions

3.4.1 Operators

3.4.2 Operand Types for Operators
3.4.3 Symbols

3.4.4 Numbers

3.5 Addressing Modes

3.6 Variants on Instruction Types
3.7 Directives

3.1 Introduction to the 68000 Microchip

This section gives a brief introduction to the 68000 microchip. It should help

you to understand the concepts introduced later in the chapter. It assumes that

you have already had experience with assembly language on another computer.
The memory available to the 68000 consists of

THE MACRO ASSEMBLER 187

* the internal registers (on the chip), and
* the external main memory.

There are 17 registers, but only 16 are available at any given moment. Eight
of them are data registers named DO to D7, and the others are address registers
called A0 to A7. Each register contains 32 bits. In many contexts, you may use
either kind of register, but others demand a specific kind. For instance, you
may use any register for operations on word (16-bit) and long word (32-bit)
quantities or for indexed addressing of main memory. Although, for operations
on byte (8-bit) operands, you may only use data registers, and for addressing
main memory, you may only use address registers as stack pointers or base
registers. Register A7 is the stack pointer, and this is in fact two distinct
registers: the system stack pointer available in supervisor mode and the user
stack pointer available in user mode.

The main memory consists of a number of bytes of memory. Each byte has
an identifying number called its address. Memory is usually (but not always)
arranged so that its bytes have addresses 0, 1, 2, . . ., N-2, N-1 where there are
N bytes of memory in total. The size of memory that you can directly access is
very large—up to 16 million bytes. The 68000 can perform operations on bytes,
words, or long words of memory. A word is two consecutive bytes. In a word,
the first byte has an even address. A long word is four consecutive bytes also
starting at an even address. The address of a long word is the even address of
its lowest numbered first byte.

As well as holding items of data being manipulated by the computer, the
main memory also holds the instructions that tell the computer what to do.
Each instruction occupies from one to 5 words, consisting of an operation word
between zero and four operand words. The operation word specifies what
action is to be performed (and implicitly how many words there are in the
whole instruction). The operand words indicate where in the registers or main
memory are the items to be manipulated, and where the result should be
placed.

The assembler usually executes instructions one at a time in the order that
they occur in memory, like the way you follow the steps in a recipe or play the
notes in a piece of written music. There is a special register called the program
counter (PC) which you use to hold the address of the instruction you want the
assembler to execute next. Some instructions, called jumps or branches, upset
the usual order, and force the assembler to continue executing the instruction
at a specific address. This lets the computer perform an action repeatedly, or
do different things depending on the values of data items.

To remember particular things about the state of the computer, you can use
one other special register called the status register (SR).

188 AMIGADOS DEVELOPER’'S MANUAL

3.2 Calling the Assembler

The command template for assem is

“PROG =FROM/A,-O/K,-V/K,-L/K,-H/K,-C/K,-I/K”
Alternatively, the format of the command line can be described as

assem <sourcefile> [-0 <object file>]
[<listing file>]
[-v <verification file>]
[-h <header file>]
[-c <options>]
[i <include dirlist>]

The assembler does not produce an object file or a listing file unless you
request them explicitly.

As the assembler is running, it generates diagnostic messages (errors, warn-
ings, and assembly statistics) and sends them to the screen unless you specify
a verification file.

To force the inclusion of the named file in the assembly at the head of the
source file, you use -h <filename> on the command line. This has the same
effect as using

INCLUDE “<filename>"

on line 1 of the source file.

To set up the list of directories that the assembler should search for any
INCLUDEC files, you use the -i keyword. You should specify as many directo-
ries as you require after the -i, separating the directory names by a comma (,), a
plus sign (+), or a space. Note that if you use a space, you must enclose the
entire directory list in double quotes (). Unix users, however, must escape any
double quotes with a backslash (\").

The order of the list determines the order of the directories where the
assembler should search for INCLUDE files. The assembler initially searches
the current directory before any others. Thus any file that you INCLUDE in a
program must be in the current directory, or in one of the directories listed in
the -i list. For instance, if the program “fred” INCLUDEs, apart from files in the
current directory, a file from the directory “intrnl/incl”, a file from the directory
“include/asm’”’, and a file from the directory “extrnl/incl”, you can give the -i
directory list in these three ways:

THE MACRO ASSEMBLER 189

assem fred -i intrnl/incl, include/asm,extrnl/incl
assem fred -i intrnl/inel + include/asm + extrnl/incl
assem fred -i “intrnl/incl include/asm extrnl/incl”

or, by using the space separator on the Sun under Unix, like this

assem fred -i \“intrnl/inecl include/asm extrnl/incl\”

The -c keyword allows you to pass certain options to the assembler. Each
option consists of a single character (in either upper or lower case), possibly
followed immediately by a number. Valid options follow here:

S produces a symbol dump as a part of the object file.

D inhibits the dumping of local labels as part of a symbol dump. (For C
programmers, any label beginning with a period is considered a local
label.)

C ignores the distinction between upper and lower case in labels.

X produces a cross-reference table at the end of the listing file.

Examples

assem fred.asm -o fred.o

assembles the file “fred.asm” and produces an object module in the file
fred.o.

assem fred.asm -o fred.o -1 fred.1st
assembles the file fred.asm, produces an object module in the file fred.o, and
produces a listing file in “fred.1st”.
3.3 Program Encoding

A program acceptable to the assembler takes the form of a series of input lines
that can include any of the following:

¢ Comment or Blank lines
¢ Executable Instructions
» Assembler Directives

190 AMIGADOS DEVELOPER’S MANUAL

3.3.1 Comments

To introduce comments into the program, you can use three different methods:

1. Type a semicolon (;) anywhere on a line and follow it with the text of the
comment. For example,

CMPA.L Al, AR ; Are the pointers equal?

2. Type an asterisk (*) in column one of a line and follow it with the text of the
comment. For example,

* This entire line is a comment

3. PFollow any complete instruction or directive with at least one space and
some text. For example,

MOVEQ #I0,DO place initial value in. DO

In addition, note that all blank lines are treated by the assembler as
comment lines.

3.3.2 Executable Instructions
The source statements have the general overall format:

[<label>] <opcode> [<operand>[,<operand>]...[<comment>]

To separate each field from the next, press the SPACEBAR or TAB key. This
produces a separator character. You may use more than one space to separate
fields.

3.3.2.1 Label Field
A label is a user symbol, or programmer-defined name, that either

a) Starts in the first column and is separated from the next field by at least one
space, or
b) Starts in any column, and is followed immediately with a colon (:).

If a label is present, then it must be the first nonblank item on the line. The
assembler assigns the value and type of the program counter, that is, the
memory address of the first byte of the instruction or data being referenced, to
the label. Labels are allowed on all instructions, and on some directives, or

THE MACRO ASSEMBLER 191

they may stand alone on a line. See the specifications of individual directives in
Section 3.7 for whether a label field is allowed.

Note: You must not give multiple definitions to labels. Also, you must not
use instruction names, macro names, directives, or register names as labels.

3.3.2.2 Local Labels

Local labels are provided as an extension to the Motorola specification.
They take the form nnn$ and are only valid between any proper (named) labels.
Thus, in this example code segment

Labels Opcodes Operands

FOO: MOVE.L D6,D0

1$: MOVE.B (A0)+,(Al)+
DBRA Do,1$
MOVEQ #20,D0

BAA: TRAP #4

the label 1§ is only available from the line following the one labelled FOO to the
line before the one labelled BAA. In this case, you could then use the label 1$
in a different scope elsewhere in the program.

3.3.2.3 Opcode Field
The Opcode field follows the Label field and is separated from it by at least
one space. Entries in this field are of three types.

1. The MC68000 operation codes, as defined in the MC68000 User Manual.
2. Assembler Directives.
3. Macro invocations.

To enter instructions and directives that can operate on more than one data
size, you use an optional Size-Specifier subfield, which is separated from the
opcode by the period (.) character. Possible size specifiers are as follows:

B - Byte-sized data (8 bits)

W- Word-sized data (16 bits)

L - Long Word-sized data (32 bits)
or Long Branch specifier

S - Short Branch specifier

The size specifier must match with the instruction or directive type that you
use.

3.3.2.4 Operand Field
If present, the operand field contains one or more operands to the instruc-

192 AMIGADOS DEVELOPER'S MANUAL

tion or directive, and must be separated from it by at least one space. When
you have two or more operands in the field, you must separate them with a
comma (,). The operand field terminates with a space or newline character (a
newline character is what the assembler receives when you press RETURN), so
you must not use spaces between operands.

3.3.2.5 Comment Field
Anything after the terminating space of the operand field is ignored. So the
assembler treats any characters you insert after a space as a comment.

3.4 Expressions

An expression is a combination of symbols, constants, algebraic operators, and
parentheses that you can use to specify the operand field to instructions or
directives. You may include relative symbols in expressions, but they can only
be operated on by a subset of the operators.

3.4.1 Operators

The available operators are listed below in order of precedence.

Unary Minus, Logical NOT (-and~)
Lshift, Rshift (<<and>>)

Logical AND, Logical OR (& and !)
Multiply, Divide (* and/)

Add, Subtract (+ and -)

G LN

To override the precedence of the operators, enclose sub-expressions in
parentheses. The assembler evaluates operators of equal precedence from left
to right. Note that, normally, you should not have any spaces in an expression,
as a space is regarded as a delimiter between one field and another.

3.4.2 Operand Types for Operators

In the following table, “A” represents absolute symbols, and “R” represents
relative symbols. The table shows all the possible operator/operand combina-
tions, with the type of the resulting value. “x” indicates an error. The
Unary minus and the Logical operators are only valid with an absolute
operand.

THE MACRO ASSEMBLER 193

Operators Operands
Aop A RopR AopR Rop A
+ A X R R
- A A X R
* A X X X
/ A X X X
& A X X X
! A X X X
>> A X X X
<< A X X X

Table 3-A: Operand Types for Operators

3.4.3 Symbols

A symbol is a string of up to 30 characters. The first character of a symbol must
be one of the following:

* An alphabetic character, that is, a through z, or A through Z.
* An underscore (__).
* A period (.).

The rest of the characters in the string can be any of these characters or also
numeric (0 through 9). In all symbols, the lower case characters (a-z) are not
treated as synonyms with their upper case equivalents (unless you use the
option C when you invoke the assembler). So “fred” is different from “FRED”
and “FRed”. However, the assembler recognizes instruction opcodes, direc-
tives, and register names in either upper or lower case. A label equated to a
register name with EQUR is also recognized by the assembler in either upper
or lower case. Symbols can be up to 30 characters in length, all of which
are significant. The assembler takes symbols longer than this and truncates
them to 30 characters, giving a warning that it has done so. The Instruction
names, Directive names, Register names, and special symbols CCR, SR,
SP, and USP cannot be used as user symbols. A symbol can be one of three

types:

Absolute
a) The symbol was SET or EQUated to an Absolute value.

194 AMIGADOS DEVELOPER'S MANUAL

Relative
a) The symbol was SET or EQUated to a Relative value.
b) The symbol was used as a label.

Register
a) The symbol was set to a register name using EQUR (This is an extension
from the Motorola specification).

There is a special symbol “*”, which has the value and type of the current
program counter, that is, the address of the current instruction or directive that
the assembler is acting on.

3.4.4 Numbers

You may use a number as a term of an expression, or as a single value. Numbers
ALWAYS have absolute values and can take one of the following formats:

Decimal
(a string of decimal digits)
Example: 1234

Hexadecimal
($ followed by a string of hex digits)
Example: $89AB

Octal
(@ followed by a string of octal digits)
Example: @743

Binary
(% followed by zeros and ones)
Example: %10110111

ASCII Literal
(Up to 4 ASCII characters within quotes)
Examples: ‘ABCD” ™

Strings of less than 4 characters are justified to the right, using nul as the
packing character.

To obtain a quote character in the string, you must use two quotes. An
example of this is

7It’ ,S’

THE MACRO ASSEMBLER 195

3.5 Addressing Modes

The effective address modes define the operands to instructions and directives,
and you can find a detailed description of them in any good reference book on
the 68000. Addresses refer to individual bytes, but instructions, word and
long word references, access more than one byte, and the address for these
must be word aligned.

In the following table, Dn represents one of the data registers (D0-D7), “An”
represents one of the address registers (AO-A7, SP and PC), “a” represents an
absolute expression, “r”’ represents a relative expression, and “Xn” represents
An or Dn, with an optional “.W" or “.L" size specifier. The syntax for each of
the modes is as follows:

Table 3-B: Macro Assembler Address Modes and Registers

Address Mode Description and Examples

Dn Data Register Direct
Example: MOVE D0, D1

An Address Register Direct
Example: MOVEA AQ,Al

(An) Address Register Indirect
Example: MOVE D0,(A1)

(An) + Address Register Indirect Post Increment
Example: MOVE (A7)+,D0

-(An) Address Register Indirect Pre Decrement
Example: MOVE DO0,-(A7)

a(An) Address Register Indirect with Displacement
Example: MOVE 20(A0),D1

a(An,Xn) Address Register Indirect with Index
Example: MOVE 0(A0,D0),D1

MOVE 12(A1,A0.L),D2
MOVE 120(A0,D6.W),D4

a Short absolute (16 bits)
Example: MOVE $1000,D0
a Long absolute (32 bits)
Example: MOVE $10000,D0
r Program Counter Relative with Displacement
Example: MOVE ABC,D0
(ABC is relative)
r(Xn) Program Counter Relative with Index
Example: MOVE ABC(D0.L),D1

(ABC is relative)

196 AMIGADOS DEVELOPER’'S MANUAL

#a Immediate data
Example: MOVE #1234,D0
USP
CCR Special addressing modes
SR
Example: MOVE AQ,USP
MOVE D0,CCR
MOVE D1,SR

3.6 Variants on Instruction Types

Certain instructions (for example, ADD, CMP) have an address variant (that
refers to address registers as destinations), immediate and quick forms (when
immediate data possibly within a restricted size range appears as an operand),
and a memory variant (where both operands must be a postincrement address).

To force a particular variant to be used, you may append A, Q, I, or M to the
instruction mnemonic. In this case, the assembler uses the specified form of
the instruction, if it exists, or gives an error message.

If, however, you specify no particular variant, the assembler automatically
converts to the “I”, “A”, or “M” forms where appropriate. However, it does
not convert to the “Q” form. For example, the assembler converts the following:

ADDL A2, Al
to

ADDA.L AR, Al

3.7 Directives

All assembler directives (with the exception of DC and DCB) are instructions to
the assembler, rather than instructions to be translated into object code. At the
beginning of this section, there is a list of all the directives (Table 3-C),
arranged by function; at the end there is an individual description for each
directive, arranged by function.

Note that the assembler only allows labels on directives where specified. For
example, EQU is allowed a label. It is optional for RORG, but not allowed for
LLEN or TTL.

The following table lists the directives by function:

THE MACRO ASSEMBLER 197

Table 3-C: Directives

Assembly Control
Directive
SECTION
RORG
OFFSET
END

Symbol Definition
Directive
EQU
EQUR
REG
SET

Data Definition
Directive
DC
DCB
DS

Listing Control
Directive
PAGE
LIST
NOLIST (NOL)
SPC n
NOPAGE
LLEN n
PLEN n
TTL
NOOB]J
FAIL
FORMAT
NOFORMAT

Conditional Assembly
Directive
CNOP
IFEQ
IFNE
IFGT

Description
Program section
Relocatable origin
Define offsets
Program end

Description

Assign permanent value

Assign permanent register value
Assign permanent value

Assign temporary value

Description

Define constants
Define Constant Block
Define storage

Description

Page-throw to listing

Turn on listing

Turn off listing

Skip n blank lines

Turn off paging

Set line length (60 < = n <= 132)
Set page length (24 < = n < = 100)
Set program title (max 40 chars.)
Disable object code output
Generate an assembly error

No action

No action

Description

Conditional NOP for alignment
Assemble if expression is 0
Assemble if expression is not 0
Assemble if expression > 0

198 AMIGADOS DEVELOPER’S MANUAL

Directive Description
IFGE Assemble if expression > = (
IFLT Assemble if expression < 0
IFLE Assemble if expression < = 0
IFC Assemble if strings are identical
IFNC Assemble if strings are not identical
IFD Assemble if symbol is defined
IEND Assemble if symbol is not defined
ENDC End of conditional assembly
Macro Directives
Directive Description
MACRO Define a macro name
NARG Special symbol
ENDM End of macro definition
MEXIT Exit the macro expansion
External Symbols
Directive Description
XDEF Define external name
XREF Reference external name

General Directives

Directive Description

INCLUDE Insert file in the source
MASK2 No action

IDNT Name program unit

Assembly Control Directives

SECTION Program Section
Format: [<label>] SECTION <name>[, <type>]

This directive tells the assembler to restore the counter to the last location
allocated in the named section (or to zero if used for the first time).

<name> is a character string optionally enclosed in double quotes.
<type> if included, must be one of the following keywords:

CODE indicates that the section contains relocatable code. This is the
default.

DATA Indicates that the section contains initialized data (only).

BSS indicates that the section contains uninitialized data.

THE MACRO ASSEMBLER 199

The assembler can maintain up to 255 sections. Initially, the assembler
begins with an unnamed CODE section. The assembler assigns the optional
symbol <labels> to the value of the program counter after it has executed the
SECTION directive. In addition, where a section is unnamed, the shorthand
for that section is the keyword CODE.

RORG Set Relative Origin
Format: [<label>] RORG <absexp>

The RORG directive changes the program counter to be <absexp> bytes
from the start of the current relocatable section. The assembler assigns relocatable
memory locations to subsequent statements, starting with the value assigned
to the program counter. To do addressing in relocatable sections, you use the
"“program counter relative with displacement” addressing mode. The label value
assignment is the same as for SECTION.

OFFSET Define offsets
Format: OFFSET <absexp>

To define a table of offsets via the DS directive beginning at the address
<absexp>, you use the OFFSET directive. Symbols defined in an OFFSET table
are kept internally, but no code-producing instructions or directives may
appear. To terminate an OFFSET section, you use a RORG, OFFSET, SEC-
TION, or END directive.

END End of program
Format: [<label>] END

The END directive tells the assembler that the source is finished, and the
assembler ignores subsequent source statements. When the assembler en-
counters the END directive during the first pass, it begins the second pass. If,
however, it detects an end-of-file before an END directive, it gives a warning
message. If the label field is present, then the assembler assigns the value
of the current program counter to the label before it executes the END
directive.

Symbol Definition Directives

EQU Equate symbol value
Format: <label> EQU <exp>

The EQU directive assigns the value of the expression in the operand field to
the symbol in the label field. The value assigned is permanent, so you may not
define the label anywhere else in the program.

Note: Do not insert forward references within the expression.

200 AMIGADOS DEVELOPER’'S MANUAL

EQUR Equate register value
Format: <label> EQUR <register>

This directive lets you equate one of the processor registers with a user
symbol. Only the Address and Data registers are valid, so special symbols like
SR, CCR, and USP are illegal here. The register is permanent, so you cannot
define the label anywhere else in the program. The register must not be a
forward reference to another EQUR statement. The assembler matches labels
defined in this way without distinguishing between upper and lower case.

REG Define register list
Format: <label>REG<register list>

The REG directive assigns a value to label that the assembler can translate
into the register list mask format used in the MOVEM instruction. <register
list> is of the form

R1 [-R2][/R3[-R4]]. . .

SET Set symbol value
Format: <label> SET <exp>

The SET directive assigns the value of the expression in the operand field to
the symbol in the label field. SET is identical to EQU, apart from the fact that
the assignment is temporary. You can always change SET later on in the
program.

Note: You should not insert forward references within the expression or
refer forward to symbols that you defined with SET.

Data Definition Directives

DC Define Constant
Format: [<label>] DC[.<size>] <list>

The DC directive defines a constant value in memory. It may have any
number of operands, separated by commas (,). The values in the list must be
capable of being held in the data location whose size is given by the size
specifier on the directive. If you do not give a size specifier, DC assumes it is
.W_ If the size is .B, then there is one other data type that can be used: that of
the ASCII string. This is an arbitrarily long series of ASCII characters, con-
tained within quotation marks. As with ASCII literals, if you require a quotation
mark in the string, then you must enter two. If the size is .W or .L, then the
assembler aligns the data onto a word boundary.

DCB Define Constant Block
Format: [<label>] DCB[.<size>] <absexp>,<exp>
You use the DCB directive to set a number (given by <absexp>) of bytes,

THE MACRO ASSEMBLER 201

words, or long words to the value of the expression <exp>. DCB.<size> n, exp
is equivalent to repeating n times the statement DC.<size> exp.

DS Define Storage
Format: [<label>] DS|.<size>] <absexp>

To reserve memory locations, you use the DS directive. DS, however, does
no initialization. The amount of space the assembler allocates depends on the
data size (that you give with the size specifier on the directive), and the value
of the expression in the operand field. The assembler interprets this as the
number of data items of that size to allocate. As with DC, if the size specifier is
.Wor .L, DS aligns the space onto a word boundary. So, DS.W 0 has the effect
of aligning to a word boundary only. If you do not give a size specifier, DS
assumes a default of .W. See CNOP for a more general way of handling
alignment.

Listing Control Directives

PAGE Page Throw
Format: PAGE

Unless paging has been inhibited, PAGE advances the assembly listing to
the top of the next page. The PAGE directive does not appear on the output
listing.

LIST Turn on Listing
Format: LIST

The LIST directive tells the assembler to produce the assembly listing file.
Listing continues until it encounters either an END or a NOLIST directive. This
directive is only active when the assembler is producing a listing file. The LIST
directive does not appear on the output listing.

NOLIST Turn off Listing
Format: NOLIST
NOL
The NOLIST or NOL directive turns off the production of the assembly
listing file. Listing ceases until the assembler encounters either an END or a
LIST directive. The NOLIST directive does not appear on the program listing.

SPC Space Blank Lines
Format: SPC <number>

The SPC directive outputs the number of blank lines given by the operand
field, to the assembly listing. The SPC directive does not appear on the
program listing.

202 AMIGADOS DEVELOPER’'S MANUAL

NOPAGE Turn off Paging
Format: NOPAGE

The NOPAGE directive turns off the printing of page throws and title
headers on the assembly listing.

LLEN Set Line Length
Format: LLEN <number>

The LLEN directive sets the line length of the assembly listing file to the
value you specified in the operand field. The value must lie between 60 and
132, and can only be set once in the program. The LLEN directive does not
appear on the assembly listing. The default is 132 characters.

PLEN Set Page Length
Format: PLEN <number>

The PLEN directive sets the page length of the assembly listing file to
the value you specified in the operand field. The value must lie between
24 and 100, and you can only set it once in the program. The default is 60
lines.

TTL Set Program Title
Format: TTL <title string>

The TTL directive sets the title of the program to the string you gave in the
operand field. This string appears as the page heading in the assembly listing.
The string starts at the first nonblank character after the TTL, and continues
until the end of line. It must not be longer than 40 characters in length. The
TTL directive does not appear on the program listing.

NOOBJ Disable Object Code Generation
Format: NOOB]

The NOOB]J directive disables the production of the object code file at the
end of assembly. This directive disables the production of the code file, even if
you specified a filename when you called the assembler.

FAIL Generateausererror
Format: FAIL

The FAIL directive tells the assembler to flag an error for this input
line.

FORMAT No action
Format: FORMAT

The assembler accepts this directive but takes no action on receiving it.
FORMAT is included for compatibility with other assemblers.

THE MACRO ASSEMBLER 203

NOFORMAT No action
Format: NOFORMAT

The assembler accepts this directive but takes no action on receiving it.
NOFORMAT is included for compatibility with other assemblers.

Conditional Assembly Directives

CNOP Conditional NOP
Format: [<label>] CNOP <number>,<number>

This directive is an extension from the Motorola standard and allows a
section of code to be aligned on any boundary. In particular, it allows any data
structure or entry point to be aligned to a long word boundary.

The first expression represents an offset, while the second expression repre-
sents the alignment required for the base. The code is aligned to the specified
offset from the nearest required alignment boundary. Thus

CNOP 0,4
aligns code to the next long word boundary while
CNOP 2,4

aligns code to the word boundary 2 bytes beyond the nearest long word
aligned boundary.

IFEQ Assemble if expression = 0
IFNE Assemble if expression <> 0
IFGT Assemble if expression > 0
IFGE Assemble if expression > = 0
IFLT Assemble if expression < 0
IFLE Assemble if expression < =
Format: IFxx <absexp>

You use the IFxx range of directives to enable or disable assembly, depend-
ing on the value of the expression in the operand field. If the condition is not
TRUE (for example, IFEQ 2+1), assembly ceases (that is, it is disabled). The
conditional assembly switch remains active until the assembler finds a match-
ing ENDC statement. You can nest conditional assembly switches arbitrarily,
terminating each level of nesting with a matching ENDC.

IFC Assemble if strings are identical
IFNC Assemble if strings are not identical
Format: IFC <string>, <string>

IFNC <string>,<string>
The strings must be a series of ASCII characters enclosed in single quotes,

204 AMIGADOS DEVELOPER'S MANUAL

for example, 'FOO’" or (the empty string). If the condition is not TRUE,
assembly ceases (that is, it is disabled). Again the conditional assembly switch
remains active until the assembler finds a matching ENDC statement.

IFD Assemble if symbol defined
IFND Assemble if symbol not defined
Format: IFD <symbol name>
IFND <symbol name>
Depending on whether or not you have already defined the symbol, the
assembler enables or disables assembly until it finds a matching ENDC.

ENDC End conditional assembly
Format: ENDC

To terminate a conditional assembly, you use the ENDC directive, set up
with any of the 8 IFxx directives above. ENDC matches the most recently
encountered condition directive.

Macro Directives

MACRO Start a macro definition
Format: <label> MACRO

MACRO introduces a macro definition. ENDM terminates a macro defini-
tion. You must provide a label, which the assembler uses as the name of the
macro; subsequent uses of that label as an operand expand the contents of the
macro and insert them into the source code. A macro can contain any opcode,
most assembler directives, or any previously defined macro. A plus sign (+) in
the listing marks any code generated by macro expansion. When you use a
macro name, you may append a number of arguments, separated by commas.
If the argument contains a space (for example, a string containing a space) then
you must enclose the entire argument within < (less than) and > (greater than)
symbols.

The assembler stores up and saves the source code that you enter (after a
MACRO directive and before an ENDM directive) as the contents of the macro.
The code can contain any normal source code. In addition, the symbol \
(backslash) has a special meaning. Backslash followed by a number “n” indicates
that the value of the nth argument is to be inserted into the code. If the nth
argument is omitted then nothing is inserted. Backslash followed by the sym-
bol ““(«”’ tells the assembler to generate the text “.nnn’’, where nnn is the number
of times the \@ combination it has encountered. This is normally used to
generate unique labels within a macro.

You may not nest macro defintions, that is, you cannot define a macro
within a macro, although you can call a macro you previously defined. There

THE MACRO ASSEMBLER 205

is a limit to the level of nesting of macro calls. This limit is currently set
at ten.

Macro expansion stops when the assembler encounters the end of the stored
macro text, or when it finds a MEXIT directive.

NARG Special symbol
Format: NARG

The symbol NARG is a special reserved symbol and the assembler assigns it
the index of the last argument passed to the macro in the parameter list (even
nulls). Outside of a macro expansion, NARG has the value 0.

ENDM Terminate a macro definition
Format: ENDM
This terminates a macro definition introduced by a MACRO directive.
MEXIT Exit from macro expansion
Format: MEXIT

You use this directive to exit from macro expansion mode, usually in conjuction
with the IFEQ and IFNE directives. It allows conditional expansion of macros.
Once it has executed the directive, the assembler stops expanding the current
macro as though there were no more stored text to include.

External Symbols

XDEF Define an internal label as an external entry
point
Format: XDEF <label>[,<label>...]

One or more absolute or relocatable labels may follow the XDEF directive.
Each label defined here generates an external symbol definition. You can
make references to the symbol in other modules (possibly from a high-
level language) and satisfy the references with a linker. If you use this
directive or XREF, then you cannot directly execute the code produced by the
assembler.

XREF Definean externalname
Format: XREF <label>[,<label>...]

One or more labels that must not have been defined elsewhere in the
program follow the XREF directive. Subsequent uses of the label tell the
assembler to generate an external reference for that label. You use the label as
if it referred to an absolute or relocatable value depending on whether the
matching XDEF referred to an absolute or relocatable symbol.

The actual value used is filled in from another module by the linker. The

206 AMIGADOS DEVELOPER’'S MANUAL

linker also generates any relocation information that may be required in order
for the resulting code to be relocatable.

External symbols are normally used as follows. To specify a routine in one
program segment as an external definition, you place a label at the start of the
routine and quote the label after an XDEF directive. Another program may call
that routine if it declares a label via the XREF directive and then jumps to the
label so declared.

General Directives

INCLUDE Insertanexternalfile
Format: INCLUDE “<file name>"

The INCLUDE directive allows the inclusion of external files into the pro-
gram source. You set up the file that INCLUDE inserts with the string descrip-
tor in the operand field. You can nest INCLUDE directives up to a depth of
three, enclosing the filenames in quotes as shown. INCLUDE is especially
useful when you require a standard set of macro definitions or EQUs in several
programs.

You can place the definitions in a single file and then refer to them from
other programs with a suitable INCLUDE. It is often convenient to place
NOLIST and LIST directives at the head and tail of files you intend to include
via INCLUDE. AmigaDOS searches for the file specification first in the current
directory, then in each subsequent directory in the list you gave in the -i
option.

MASK?2 No action
Format: MASK?2

The assembler accepts the MASK2 directive, but it takes no action on receiv-
ing it.

IDNT Name program unit
Format: IDNT <string>

A program unit, which consists of one or more sections, must have a name.
Using the IDNT directive, you can define a name consisting of a string option-
ally enclosed in double quotes. If the assembler does not find an IDNT directive,
it outputs a program unit name that is a null string.

Chapter 4
The Linker

This chapter describes the AmigaDOS Linker. The AmigaDOS Linker produces
a single binary load file from one or more input files. It can also produce
overlaid programs.

4.1 Introduction

4.2 Using the Linker

4.2,1 Command Line Syntax
4.2.2 WITH Files

4.2.3 Errors and Other Exceptions
4.2.4 MAP and XREF Output
4.3 Opverlaying

4.3.1 OVERLAY Directive

4.3.2 References to Symbols
4.3.3 Cautionary Points

4.4 Error Codes and Messages

4.1 Introduction

ALINK produces a single binary output file from one or more input files.
These input files, known as object files, may contain external symbol infor-
mation. To produce object files, you use your assembler or language translator.
Before producing the output, or load file, the linker resolves all references
to symbols.

The linker can also produce a link map and symbol cross-reference table.

Associated with the linker is an overlay supervisor. You can use the overlay
supervisor to overlay programs written in a variety of languages. The linker
produces load files suitable for overlaying in this way.

You can drive the linker in two ways:

208 AMIGADOS DEVELOPER’S MANUAL

1. As a Command line. You can specify most of the information necessary for
running the linker in the command parameters.

2. As a Parameter file. As an alternative, if a program is being linked repeti-
tively, you can use a parameter file to specify all the data for the linker.

These two methods can take three types of input files:

1. Primary binary input. This refers to one or more object files that form the
initial binary input to the linker. These files are always output to the load
file, and the primary input must not be empty.

2. Overlay files. If overlaying, the primary input forms the root of the overlay
tree, and the overlay files form the rest of the structure.

3. Libraries. This refers to specified code that the linker incorporates automati-
cally. Libraries may be resident or scanned. A resident library is a load file
which may be resident in memory, or loaded as part of the “library open”
call in the operating system. A scanned library is an object file within an
archive format file. The linker only loads the file if there are any outstanding
external references to the library.

The linker works in two passes.

1. In the first pass, the linker reads all the primary, library, and overlay files,
and records the code segments and external symbol information. At the end
of the first pass, the linker outputs the map and cross-reference table, if
required.

2. If you specify an output file, then the linker makes a second pass through the
input. First it copies the primary input files to the output, resolving symbol
references in the process, and then it copies out the required library code
segments in the same way. Note that the library code segments form part of
the root of the overlay tree. Next, the linker produces data for the overlay
supervisor, and finally outputs the overlay files.

In the first pass, after reading the primary and overlay input files, the linker
inspects its table of symbols, and if there are any remaining unresolved refer-
ences, it reads the files, if any, that you specified as the library input. The
linker then marks any code segments containing external definitions for these
unresolved references for subsequent inclusion in the load file. The linker only
includes those library code segments that you have referenced.

THE LINKER 209

4.2 Using the Linker

To use the linker, you must know the command syntax, the type of input and
output that the linker uses, and the possible errors that may occur. This section
attempts to explain these things.

4.2.1 Command Line Syntax

The ALINK command has the following parameters:

ALINK [FROM | ROOT] files [TO file] [WITH file]
[VER file] [LIBRARY | LIB files] [MAP file]
[XREF file] [WIDTH n]

The keyword template is

“FROM =ROOT, TO/K,WITH/K, VER/K,LIBRARY = LIB/K,
MAP/K,XREFK,WIDTH/K"

In the above, “file” means a single file name, “files” means zero or more file
£ r’

names, separated by a comma or plus sign, and ““n” is an integer.
The following are examples of valid uses of the ALINK command:

ALINK a
ALINK ROOT a+b+c+d MAP map-file WIDTH 120
ALINK ab,c TO output LIBRARY :flib/lib,obj/newlib

When you give a list of files, the linker reads them in the order you specify.
The parameters have the following meanings:

FROM: Specifies the object files that you want as the primary binary input.
The linker always copies the contents of these files to the load file
to form part of the overlay root. At least one primary binary input
file must be specified. ROOT is a synonym for FROM.

TO: Specifies the destination for the load file. If this parameter is not
given, the linker omits the second pass.

WITH: Specifies files containing the linker parameters, for example, nor-
mal command lines. Usually you only use one file here, but, for
completeness, you can give a list of files. Note that parameters on
the command line override those in WITH files. You can find a full
description of the syntax of these files in Section 4.2.2 of this manual.

210 AMIGADOS DEVELOPER'S MANUAL

VER: specifies the destination of messages from the linker. If you do not
specify VER, the linker sends all messages to the standard output
(usually the terminal).

LIBRARY: specifies the files that you want to be scanned as the library. The
linker includes only reference code segments. LIB is a valid alterna-
tive for LIBRARY.

MAP: specifies the destination of the link map.
XREF: specifies the destination of the cross-reference output.

WIDTH: specifies the output width that the linker can use when producing
the link map and cross-reference table. For example, if you send
output to a printer, you may need this parameter.

4.2.2 WITH Files

WITH files contain parameters for the linker. You use them to save typing a
long and complex ALINK command line many times.

A WITH file consists of a series of parameters, one per line, each consisting
of a keyword followed by data. You can terminate lines with a semicolon (;),
where the linker ignores the rest of the line. You can then use the rest of the
line after the semicolon to include a comment. The linker ignores blank lines.

The keywords available are as follows:

FROM (or ROOT) files
TO file

LIBRARY files
MAP [file]

XREF [file]
OVERLAY

tree specification

#

WIDTH n

where “file” is a single filename, “’files”” is one or more filenames, “[file]” is an
optional filename, and “n” is an integer. You may use an asterisk symbol (*) to
split long lines; placing one at the end of a line tells the printer to read the next
line as a continuation line. If the filename after MAP or XREF is omitted, the
output goes to the VER file (the terminal by default).

Parameters on the command line override those in a WITH file, so that you
can make small variations on standard links by combining command line
parameters and WITH files. Similarly, if you specify a parameter more than
once in WITH files, the linker uses the first occurrence.

THE LINKER 211

Note: In the second example below, this is true even if the first value given
to a parameter is null.

Examples of WITH files and the corresponding ALINK calls:

ALINK WITH link-file

where “link-file”’ contains

FROM obj/main,obj/s
TO bin/test
LIBRARY obj/lib

MAP

XREF X0

is the same as specifying
ALINK FROM obj/main,obj/s TO bin/test LIBRARY obj/lib XREF xo0
The command
ALINK WITH lkin LIBRARY “”

where ‘lkin’ contains

FROM bin/prog,bin/subs
LIBRARY nag/fortlib
TO linklib/prog

is the same as the command line
ALINK FROM bin/prog,bin/subs TO linklib.prog

Note: In the example above, the null parameter for LIBRARY on the com-
mand line overrides the value “nag/fortlib”’ in the WITH file, and so the linker
does not read any libraries.

4.2.3 Errors and Other Exceptions

Various errors can occur while the linker is running. Most of the messages
are self-explanatory and refer to the failure to open files, or to errors
in command or binary file format. After an error, the linker terminaies at
once.

There are a few messages that are warnings only. The most important

http://termina.es

212 AMIGADOS DEVELOPER’'S MANUAL

ones refer to undefined or multiply-defined symbols. The linker should not
terminate after receiving a warning,.

If any undefined symbols remain at the end of the first pass, the linker
produces a warning, and outputs a table of such symbols. During the second
pass, references to these symbols become references to location zero.

If the linker finds more than one definition of a symbol during the first pass,
it puts out a warning, and ignores the later definition. The linker does not
produce this message if the second definition occurs in a library file, so that
you can replace library routines without it producing spurious messages. A
serious error follows if the linker finds inconsistent symbol references, and
linking then terminates at once.

Since the linker only uses the first definition of any symbol, it is important
that you understand the following order in which files are read.

1. Primary (FROM or ROOT) input.
2. Opverlay files.
3. LIBRARY files.

Within each group, the linker reads the files in the order that you specify in
the file list. Thus definitions in the primary input override those in the overlay
files, and those in the libraries have lowest priority.

4.2.4 MAP and XREF Output

The link map, which the linker produces after the first pass, lists all the code
segments that the linker output to the load file in the second pass, in the order
that they must be written.

For each code segment, the linker outputs a header, starting with the name
of the file (truncated to eight letters), the code segment reference number, the
type (that is, data, code, bss, or COMMON), and size. If the code segment was
in an overlay file, the linker also gives the overlay level and overlay ordinate.

After the header, the linker prints each symbol defined in the code segment,
together with its value. It prints the symbols in ascending order of their values,
appending an asterisk (*) to absolute values.

The value of the WIDTH parameter determines the number of symbols printed
per line. If this is too small, then the linker prints one symbol on each line.

The cross-reference output also lists each code segment, with the same
header as in the map.

The header is followed by a list of the symbols with their references. Each
reference consists of a pair of integers, giving the offset of the reference and
the number of the code segment in which it occurs. The code segment number
refers to the number given in each header.

THE LINKER 213

4.3 Qverlaying

The automatic overlay system provided by the linker and the overlay supervi-
sor allows programs to occupy less memory when running, without any
alterations to the program structure.

When using overlaying, you should consider the program as a tree structure.
That is, with the root of the tree as the primary binary input, together with
library code segments and COMMON blocks. This root is always resident in
memory. The overlay files then form the other nodes of the tree, according to
specifications in the OVERLAY directive.

The output from the linker when overlaying, as in the usual case, is a single
binary file, which consists of all the code segments, together with information
giving the location within the file of each node of the overlay tree. When you
load the program only the root is brought into memory. An overlay supervisor
takes care of loading and unloading the overlay segments automatically. The
linker includes this overlay supervisor in the output file produced from
a link using overlays. The overlay supervisor is invisible to the program
running.

4.3.1 OVERLAY Directive

To specify the tree structure of a program to the linker, you use the OVERLAY
directive. This directive is exceptional in that you can only use it in WITH files.
As with other parameters, the linker uses the first OVERLAY directive you
give it.

The format of the directive is

OVERLAY
Xfiles

#

Note: The overlay directive can span many lines. The linker recognizes a
hash sign (#) or the end-of-file as a terminator for the directive.

Each line after OVERLAY specifies one node of the tree, and consists of a
count “X” and a file list.

The level of a node specifies its “depth” in the tree, starting at zero, which is
the level of the root. The count “X”, given in the directive, consists of zero or

more asterisks, and the overlay level of the node is given by X + 1.
As well as the level, each node other than the root has an ordinate value.

214 AMIGADOS DEVELOPER’S MANUAL

This refers to the order in which the linker should read the descendents of each
node, and starts at 1, for the first “offspring” of a parent node.

Note: There may be nodes with the same level and ordinate, but with
different parents.

While reading the OVERLAY directive, the linker remembers the current level,
and, for each new node, compares the level specified with this value. If less, then
the new node is a descendent of a previous one. If equal, the new node has the
same parent as the current one. If greater, the new node is a direct descendant of
the current one, and so the new level must be one greater than the current value.

A number of examples may help to clarify this:

Directive Level Ordinate Tree
OVERLAY ROOT
a 1 1 41V
b 1 2 abc
C 1 3
#
OVERLAY ROOT
a 1 1 VA
b 1 2 a b
*c 2 1 Vil
*d 2 2 cd
#
OVERLAY ROOT
a 1 1
b 1 2 VAR
*c 2 1 abefl
d 2 2N
e 1 3 cd ghk
f 1 4 Vil
*g 2 1 ij
*h 2 2
*i 3 1
’(-3(-]' 3 2
*k 2 3
1 1 5
#

Figure 4-A

The level and ordinate values given above refer to the node specified on the
same line. Note that all the files given in the examples above could have been
file lists. Single letters are for clarity. For example, Figure 4-B:

THE LINKER 215

ROOT bin/mainaaa

OVERLAY

bin/mainbbb bin/maincece,bin/mainddd

*bin/makereal

binv/trbblock bin/transint bin/transr
bin/transri

bin/outcode

#

Figure 4-B
specifies the tree in the following figure:

bin/mainaaa

[\

bin/mainbbb bin/outcode

bin/mainccc
bin/mainddd

/\

bin/makereal bin/trbblock
bin/transint
bin/transr
bin/transri

Figure 4-C

During linking, the linker reads the overlay files in the order you specified in
the directive, line by line. The linker preserves this order in the map and cross
reference output, and so you can deduce the exact tree structure from the
overlay level and ordinate the linker prints with each code segment.

4.3.2 References to Symbols

While linking an overlaid program, the linker checks each symbol reference
for validity.

216 AMIGADOS DEVELOPER’S MANUAL

Suppose that the reference is in a tree node “R”, and the symbol in a node “S”.
Then the reference is legal if one of the following is true.

(a) R and S are the same node.
(b) R is a descendent of S.
(c) R is the parent of S.

References of the third type above are known as overlay references. In this
case, the linker enters the overlay supervisor when the program is run. The
overlay supervisor then checks to see if the code segment containing the
symbol is already in memory. If not, first the code segment, if any, at this
level, and all its descendents are unloaded, and then the node containing the
symbol is brought into memory. An overlaid code segment returns directly to
its caller, and so is not unloaded from memory until another node is loaded on
top of it.

For example, suppose that the tree is:

A

/|

B C

/N

DEF

When the linker first loads the program, only A is in memory. When the
linker finds a reference in A to a symbol in B, it loads and enters B. If B in turn
calls D then again a new node is loaded. When B returns to A, both B and D
are left in memory, and the linker does not reload them if the program requires
them later. Now suppose that A calls C. First the linker unloads the code
segments that it does not require, and which it may overwrite. In this case,
these are B and D. Once it has reclaimed the memory for these, the linker can
load C.

Thus, when the linker executes a given node, all the node’s ““ancestors”, up
to the root are in memory, and possibly some of its descendents.

4.3.3 Cautionary Points

The linker assumes that all overlay references are jumps or subroutine calls,
and routes them through the overlay supervisor. Thus, you should not use
overlay symbols as data labels.

Try to avoid impure code when overlaying because the linker does not
always load a node that is fresh from the load file.

THE LINKER 217

The linker gives each symbol that has an overlay reference an overlay
number. It uses this value, which is zero or more, to construct the overlay
supervisor entry label associated with that symbol. This label is of the form
“OVLYnnnn”, where nnnn is the overlay number. You should not use symbols
with this format elsewhere.

The linker gathers together all program sections with the same section name.
It does this so that it can then load them continuously in memory.

4.4 Error Codes and Messages

These errors should be rare. If they do occur, the error is probably in the
compiler and not in your program. However, you should first check to see
that you sent the linker a proper program (for example, an input program
must have an introductory program unit that tells the linker to expect a
program).

Invalid Object Modules

2 Invalid use of overlay symbol

3 Invalid use of symbol

4 Invalid use of common

5 Invalid use of overlay reference

6 Nonzero overlay reference

7 Invalid external block relocation

8 Invalid bss relocation

9 Invalid program unit relocation
10 Bad offset during 32 bit relocation
11 Bad offset during 6/8 bit relocation
12 Bad offset with 32 bit reference
13 Bad offset with 6/8 bit reference
14 Unexpected end of file

15 Hunk.end missing

16 Invalid termination of file

17 Premature termination of file

18 Premature termination of file

Internal Errors

19 Invalid type in hunk list

20 Internal error during library scan
21 Invalid argument freevector

22 Symbol not defined in second pass

Appendix

Console Input and Output
on the Amiga

Note: Throughout this appendix, the characters “<CSI>" represent the Con-
trol Sequence Introducer. For output, you may either use the two character
sequence Esc-[or the one byte value $9B (hex). For input, you receive $9Bs.

Introduction

This appendix describes several ways to do console (keyboard and screen)
input and output on the Amiga. You can open the console as you would any
other AmigaDOS file (with “*”, “CON:”, “RAW:”) or do direct calls to
console.library. The advantages of using each are listed below:

* “Asterisk” does not open any windows; it just uses the existing
CLI window. You do not receive any complex character se-
quences. You do receive lower case letters a-z, uppercase
letters A—Z, numbers, ASCII special symbols, and control char-
acters. Basically, if a teletype can generate the character with a
single keystroke, you can receive it. In addition to these char-
acters, you can receive each of them with the high-order bit set
($80-$FF). Line editing is also performed for you. This means
AmigaDOS accepts <BACKSPACE> and CTRL-X for character
and line deletions. You do not have to deal with these. Any
<CSI> sequence is swallowed for you as well as control char-
acters: C, D, E, F, H, and X. Any <CR> or CTRL-M characters
are converted to CTRL-] (new-line).

CON: Is just like “*” except that you also get to define a new window.

RAW: The simple case: With RAW: (as compared to CON:) you lose
the line editing functions and you gain access to the function
and arrow keys. These are sent as sequences of characters
which you must parse in an intelligent manner.

The “complex” cases: By issuing additional commands to the
console processor (by doing writes to RAW:), you can get even
more detailed information. For example, you can request key

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 219

press and release information or data on mouse events. See
“Selection of RAW Input Events”” on page 224 for details on
requesting this information.

console.device: With this method, you have full control over the console
device. You may change the KeyMap to one of your own
design and completely “redesign” your keyboard.

Helpful AmigaDOS Commands

Two very helpful AmigaDOS commands let you play with these functions. The
first:

TYPE RAW:10/10/100/30/ opt h

accepts input from a RAW: window and displays the results in hex and ASCIL.
If you want to know for sure what characters the keyboard is sending, this
command provides a very simple way.

The second:

COPY “RAW:10/10/100/30/RAW Input” “RAW:100/10/200/100/RAW Output”

lets you type sequences into the input window and watch the cursor move-
ments in the output window. COPY cannot detect end-of-file on RAW: input,
so you have to reboot when you are finished with this command.

CON Keyboard Input

If you read from the CON: device, the keyboard inputs are preprocessed for you.

You get the ASCII characters like “B”. Most normal text gathering programs
read from the CON: device. Special programs like word processors and music
keyboard programs use RAW:.

To generate the international and special characters at the keyboard, you can
press either ALT key. This sets the high bit of the ASCII code returned for the
key pressed.

Generating $FF (umlaut y) is a special case. If it followed the standard
convention, it would be generated by ALT-DEL. But since the ASCII code
 (hex 7F) is not generally a printable character and it is our philosophy
that Alt-nonprinting character should not generate a printing character, we
have substituted ALT-numeric pad”-”.

Table A-1 lists the characters you can display on the Amiga. The characters
NBSP (nonbreak space) and SHY (soft hyphen) are used to render a space and
hyphen in text processing with additional meaning about the properties of the
character.

220 AMIGADOS DEVELOPER'S MANUAL

m O] (N N T T T N O

4 0 0 1 1 1 1 Q 0 0 0 1 1 1 1

T 5t ol il il ot ol il ilololi{itaelolily

0 1 0 1 3]] 1] 1 0 1 0 1 0 1 0 1

—prer 3104]05 2113{14
ojojo]o|CO 0]a p AlD|a
ololof+{01 1| A alq AlN]é
ololt]elo2 2|8 blr Alola
ofoj1|103 3fc cls Aldla
10100!04 41D dlt Klo|a
oj1{o]1]05 5|E elu R|0o| 8
ol1}1]oloé 6| F flv Ejo}e
o111 716 glw o I K"
1}o}olo 81H h}x Elo]e
1}ojo] 1109 9|1 ily Elulé
tlo]1}o : |y z EJU| é
o[} ;1K { ElQl e
1}1]o}o <|L | iju]id
1}1]o}1 N E Y} iyl
1l1l1}o >N - T1Pl3
AL 2 {0 ilnli

Table A-1: International Character Code

Note: AmigaDOS uses CON: input for the CLI and most other commands.
When it does this, it filters out ALL of the function key and cursor key inputs.
Programs that run under AmigaDOS can (and some do) still open the RAW:
console handler and process function key input.

Note: “NBSP” is a nonbreak sequence.
“SHY"” is a soft-hyphen.

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 221

CON Screen Output

CON: screen output is just like RAW: screen output except that <LF> (hex 0A)
is translated into a newline character. The net effect is that the cursor moves to
the first column of the next line whenever a <LF> is displayed.

RAW Screen Output
ANSI x3.64 CODES SUPPORTED For writing text to the display:

Independent Control Functions (no introducer):

Ctrl Hex Name Definition

H 08 BS BACKSPACE Move the cursor left
1 column

I 09 TAB TAB Move right 1 column

] 0A LF LINE FEED

K 0B VT VERTICAL TAB Move cursor up 1,
scroll
if necessary

L 0C FF FORM FEED Clear the screen

M 0D CR CARRIAGE RETURN Move to first column

N OE SO SHIFT OUT Set MSB of each

; character before

displaying

O OF ¢8I SHIFT IN Undo SHIFT OUT

[1B ESC ESCAPE See below

Precede the following characters with <ESC> to perform the indicated actions.

Chr Name Definition
C RIS RESET TO INITIAL STATE

Precede the following characters with <Esc> or press CTRL-ALT and the
letter to perform the indicated actions.

Hex Chr Name Definition
845tD IND INDEX: move the active position down one line

85 E NEL NEXT LINE:
8D M RI REVERSE INDEX:
9B [CSI CONTROL SEQUENCE INTRODUCER:

see next list

Control sequences (introduced by <CSI>) with parameters. The first charac-
ter in the following table (under the <CSI> column) represents the number of
allowable parameters, as follows:

222

AMIGADOS DEVELOPER'S MANUAL

IIOII

Illll

llzll

11311

Il4ll

11811

<CSI> Name
1@ ICH
1A CUU
1B CUD
1C CUF
1D CUB
1E CNL
1F CPL
2H CUP
1] ED
1K EL
1L IL
1M DL
1P DCH
2R CPR
18 SU
1T SD
3h SM
31 RM
3m SGR
1n DSR

indicates no parameters allowed.
indicates 0 or 1 numeric parameters.

indicates 2 numeric parameters ("14;94").

indicates any number of numeric parameters, separated by semicolons.
indicates exactly 4 numeric parameters.
indicates exactly 8 numeric parameters.

Definition
INSERT CHARACTER

CURSOR UP

CURSOR DOWN

CURSOR FORWARD
CURSOR BACKWARD
CURSOR NEXT LINE
CURSOR PRECEDING LINE
CURSOR POSITION

ERASE IN DISPLAY

ERASE IN LINE

INSERT LINE

DELETE LINE

DELETE CHARACTER

CURSOR POSITION REPORT

SCROLL UP

SCROLL DOWN

SET MODE

RESET MODE

Inserts 1 or more spaces, shifting
the remainder of the line to the
right.

Down n lines to column 1
Up n lines to column 1
“<CSI>row;columnH”’
(only to end of display)
(only to eol)

Inserts a blank line
BEFORE the line
containing the cursor.
Removes the current
line. Moves all

lines below up by

one. Blanks the

bottom line.

(in Read stream only)

Format of report:

" <CSI>row;columnR”’
Removes line from top of screen.
Moves all other lines up one.
Blanks last line.

Removes line from bottom of
screen.

Moves all other lines down one.
Blanks top line.

<CSI>20h causes RAW:

to convert <LF> to
<newline> on output.
<CSI>201 undoes SET MODE 20

SELECT GRAPHIC RENDITION

DEVICE STATUS REPORT

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 223

The following are not ANSI standard sequences; rather, they are private
Amiga sequences.

aSLPP SET PAGE LENGTH

aSLL SET LINE LENGTH

aSLO SET LEFT OFFSET

aSTO SET TOP OFFSET

aSRE SET RAW EVENTS

alER INPUT EVENT REPORT (read)
aRRE RESET RAW EVENTS

aSKR SPECIAL KEY REPORT (read)
aSCR SET CURSOR RENDITION
<Esc> p turns the cursor off

aWSR WINDOW STATUS REQUEST
aWBR WINDOW BOUNDS REPORT (read)

— e) 0D O M
[P S I S

> O
0 jae]

Examples:
Move cursor right by 1:

<CSI>C or <Tab> or <CSI>1C

Move cursor right by 20:

<CS8I>20C

Move cursor to upper left corner (home):

<CSI>H or <CSI>1;1H or <CSI>;1H or <CSI>1;H

Move cursor to the fourth column of the first line of the window:
<CSI>1;4H or <CSI>;4H

Clear the screen:

<FF> or CTRL-L {clear screen character} or
<CSI>H<CSI>] {home and clear to end of screen} or

<CSI>H<CSI>23M {home and delete 23 lines} or
<CSI>1;1H<CSI>23L {home and insert 23 lines}

224 AMIGADOS DEVELOPER’S MANUAL

RAW Keyboard Input

Reading input from the RAW: console device returns an ANSI Xx3.64
standard byte stream. This stream may contain normal characters and/or RAW
input event information. You may also request other RAW input events
using the SET RAW EVENTS (aSRE) and RESET RAW EVENTS (aRRE) con-
trol sequences discussed below. See “Selection of RAW Input Events” below
for details.

If you issue a RAW input request and there is no pending input, the read
command waits until some input is received. You can test for characters
pending by doing “WaitforChar” requests.

In the default state, the function and arrow keys cause the following se-
quences to be sent to your process:

Key Unshifted Sends Shifted Sends

F1 <CSI>0" CSsI>10"

F2 <CSI>1" <CSI>11-

F3 <CSI>2" <CSI>12"

F4 <CSI>3" <CSI>13"

F5 <CSI>4" <CSI>14"

F6 <CSI>5" <(CSI>15"

F7 <CSI>6~ <CSI>16"

F8 <CSI>7~ <CSI>17"

F9 <CSI>8" <CSI>18"

F10 <CSI>9~ <CSI>19"

HELP <CSI>?" <CSI>?" (same)

Arrow keys:

Up <CSI>A <CSI>T~

Down <CSI>B <CSI>S-

Left <CSI>C <CSI> A~ (note space)
Right <CSI>D <CSI> @~ (note space)

Selection of RAW Input Events:

If you are using RAW by default, you get the ANSI data and control
sequences mentioned above. If this does not give you enough information
about input events, you can request additional information from the console
driver.

If, for example, you need to know when each key is pressed and released,
you would request “RAW keyboard input.” This is done by writing **<CSI>1{"
to the console. The following is a list of valid RAW input requests:

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 225

RAW Input Event Types

Request

Number Description

0 nop Used internally.

1 RAW keyboard input

2 RAW mouse input

3 Event Sent whenever your window is

made active.

4 Pointer position

5 (unused)

6 Timer

7 Gadget pressed

8 Gadget released

9 Requester activity
10 Menu numbers

11 Close Gadget

12 Window resized
13 Window refreshed
14 Preferences changed
15 Disk removed

16 Disk inserted

If you select any of these events, you start to get information about the
events in the following form:

<CSI><class>
<subclass>
<keycode>
<qualifiers>
<x>

<y>

<seconds>
<microseconds>

<CSI> is a one byte field. It is the Control Sequence Introducer, 9B hex.

<class> is the RAW input event type, from the above table.

<subclass> is not currently used and is always zero (0).

<keycode> indicates which key number was pressed (see Figure A-1 and
Table A-2). This field can also be used for mouse information.

The <qualifiers> field indicates the state of the keyboard and system. The
qualifiers are defined as follows:

226 AMIGADOS DEVELOPER’S MANUAL

Bit Mask Key

0 0001 left shift

1 0002 right shift

2 0004 caps lock * special, see below
3 0008 control

4 0010 leftalt

5 0020 right alt

6 0040 left Amiga key pressed

7 0080 right Amiga key pressed

8 0100 numeric pad

9 0200 repeat

10 0400 interrupt Not currently used
11 0800 multi broadcast This (active) or all windows

12 1000 left mouse button
13 2000 right mouse button
14 4000 middle mouse button
(not available on std mouse)
15 8000 relative mouse Indicates mouse coordinates are
relative, not absolute

The CAPS LOCK key is handled in a special manner. It only generates a
keycode when it is pressed, not when it is released. However, the up and
down bit (80 hex) is still used and reported. If pressing the CAPS LOCK key
turns on the LED, then key code 62 (CAPS LOCK pressed) is sent. If pressing
the CAPS LOCK key extinguishes the LED, then key code 190 (CAPS LOCK
released) is sent. In effect, the keyboard reports this key being held down until
it is struck again.

The <seconds> and <microseconds>> fields are system time stamp taken at
the time the event occurred. These values are stored as long words by the
system and as such could (theoretically) reach 4 billion.

With RAW: keyboard input, selected keys no longer return a simple 1
character “A” to “Z” but rather return raw keycode reports with the following
form:

<(CSI>1;0;<keycode>;<qualifiers>;0;0;<secs>;<microsecs>|

For example, if the user pressed and released the “B” key with the left
SHIFT and right Amiga keys also pressed, you might receive the following
data:

<(CSI>1;0;35;129;0;0;23987;99|
<(CS8I>1;0;163;129;0;0;24003;18|

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 227

The “0;0;” fields are not used for keyboard input but are, rather, used if
you select mouse input. For mouse input, these fields would indicate the X and
Y coordinates of the mouse.

The <keycode> field is an ASCII decimal value representing the key pressed
or released. Adding 128 to the pressed key code results in the released keycode.
Figure A-1 lets you convert quickly from a key to its keycode. Table A-2 lets
you convert quickly from a keycode to a key.

[esc Y 2 ¥3 e 3 3 ¥ 8] F0 BEC
45 50[. 51 |]"52 53 r5[4. 55 56 57 58 59 46

; 2 H H 5 s 7 s s o - N mox 7 s)
00 | 01]02{03]04]05/06j07|08{08{0A]0B]OC| OD 4_L 3D| 3E { 3F

Tas) w E n T v] i o O ; " WELP 0 3 O
42 10]11]12)13]14]15]|16]17]18 |19 (1A, 1'IB 44 | 5F 2D| 2€{ 2F

CTRL A A B o ¥ G L] J [3 L - ETURN| n 1 2 E)
[63])62)20 | 1 22]|23|24]25]|26]27}28|29]|2A] 2B 4C 1D] 1E | 1F

SHIFT 3 x 3 v s N) < > ; i - > 0 -
60 | 30 131]32|33]34|35136{37|38]39]3A 61 4F | 4E OF j3C

ALY A 2 AT ¥ = ENTER
64 | 66 40 67 | 65 4D 4A| 43

Figure A-1: Reduced copy of keyboard template

228 AMIGADOS DEVELOPER’'S MANUAL

The default values given in the following correspond to:

1) The values the CON: device returns when these keys are pressed, and
2) The keycaps as shipped with the standard American keyboard.

Table A-2: Converting from Keycodes to Keys

Raw Unshifted Shifted
Key Default Default
Number Value Value

00 “<<Accent grave> T <tilde>
01
02
03
04
05
06
07
08
09
0A)

0B <Hyphen> —<Underscore>
0C = +

0D |

0E

OF 0 <Numeric pad>
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

|
@
#
$
%

&
*

(

' OV 0O NN U LN

ndefined

(=

o-Ccx-HEmMsEOo

=TT o Tre R o g0

ndefined
1 <Numeric pad>
2 <Numeric pad>
3 <Numeric pad>

W N =g ey

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA

229

Raw Unshifted Shifted

Key Default Default

Number Value Value

20 A a

21 S s

22 D d

23 F f

24 G g

25 H h

26 j j

27 K k

28 L 1

29 : ;

2A " " <single quote>
2B <RESERVED> (RESERVED)

2C undefined

2D 4 4 <Numeric pad>
2E 5 5 <Numeric pad>
2F 6 6 <Numeric pad>
30 <RESERVED> (RESERVED)

31 V4 z

32 X X

33 C c

34 Vv v

35 B b

36 N n

37 M m

38 < , <comma>>

39 > . <period>

3A ? /

3B undefined

3C . . <Numeric pad>
3D 7 7 <Numeric pad>
3E 8 8 <Numeric pad>
3F 9 9 <Numeric pad>
40 Space

41 BACKSPACE

42 TAB

43 ENTER ENTER <Numeric pad>
44 RETURN

45 Escape <Esc>

46 DEL

230

AMIGADOS DEVELOPER’S MANUAL

Raw Unshifted Shifted
Key Default Default
Number Value Value
47 undefined
48 undefined
49 undefined
4A - - <Numeric pad>
4B undefined
4C Cursor Up Scroll down
4D Cursor Down Scroll up
4E Cursor Forward Scroll left
4F Cursor Backward Scroll right
50 F1 <CSI>10"
51 F2 <CSI>11"
52 F3 <CSI>12-
53 F4 <CSI>13"
54 F5 <CSI>14"
55 Fé6 <CSI>15"
56 F7 <CSI>16"
57 F8 <CSI>17"
58 F9 <CSI>18"
59 F10 <CSI>19"
5A undefined
5B undefined
5C undefined
5D undefined
5E undefined
5F Help
60 SHIFT <left of space bar>
6l SHIFT <right of space bar>
62 Caps Lock
63 Control
64 Left Alt
65 Right Alt
66 “Amiga” <left of space bar>
67 “Amiga” <right of space bar>
68 Left Mouse Button

<not converted> Inputs are only

for the

69 Right Mouse Button

<not converted>

mouse connected
to Intuition,

APPENDIX: CONSOLE INPUT AND OUTPUT ON THE AMIGA 231

Raw Unshifted Shifted

Key Default Default

Number Value Value

6A Middle Mouse Button
<not converted> currently

“gameport” one.

6B undefined

6C undefined

6D undefined

6E undefined

6F undefined

70-7F undefined

80-F8 Up transition <release or unpress key> of one of the
above keys. 80 for 00, F8 for 7F.

F9 Last keycode was bad (was sent in order to resync)

FA Keyboard buffer overflow.

FB undefined; reserved for keyboard processor catastrophe

FC Keyboard self-test failed.

FD Power-up key stream start. Keys pressed or stuck at
power-up are sent between FD and FE.

FE Power-up key stream end.

FF (undefined, reserved)

FF Mouse event, movement only, No button change. <not
converted>

Notes about the preceding table:

1) “undefined” indicates that the current keyboard design should not gener-
ate this number. If you are using “SetKeyMap” to change the key map, the
entries for these numbers must still be included.

2) The “<not converted>"" refers to mouse button events. You must use the
sequence “<CSI>2{" to inform the console driver that you wish to receive
mouse events; otherwise, these are not transmitted.

3) “(RESERVED)” indicates that these keycodes have been reserved for non-U.S.
keyboards. The “2B” code key is between the double quote and return keys.
The “30” code key is between the SHIFT and “Z’ keys.

AmigaDOS Technical
Reference Manual

Contents
1. Filing System 234
2. Amiga Binary File Structure 243

3. AmigaDOS Data Structures 263

Chapter 1
The Filing System

This chapter describes the AmigaDOS filing system. It includes information on
how to patch a disk corrupted by hardware errors.

AmigaDOS File Structure
Root Block

User Directory Blocks

File Header Block

File List Block

Data Block

DISKED—The Disk Editor

P e e e
Nl e
Ul W N =

1.1 AmigaDOS File Structure

The AmigaDOS file handler uses a disk that is formatted with blocks of equal
size. It provides an indefinitely deep hierarchy of directories, where each
directory may contain other directories and files, or just files. The structure is a
pure tree—that is, loops are not allowed.

There is sufficient redundancy in the mechanism to allow you to patch
together most, if not all, of the contents of a disk after a serious hardware
error, for example. To patch the contents of a disk, you use the DISKED
command. For further details on the syntax of DISKED, see Section 1.2,
“DISKED—The Disk Editor,” later in this chapter. Before you can patch to-
gether the contents of a disk, you must understand the layout. The subsections
below describe the layout of disk pages.

1.1.1 Root Block

The root of the tree is the Root Block, which is at a fixed place on the disk. The
root is like any other directory, except that it has no parent, and its secondary
type is different. AmigaDOS stores the name of the disk volume in the name

field of the root block.

FILING SYSTEM

235

Each filing system block contains a checksum, where the sum (ignoring
overflow) of all the words in the block is zero.
The figure below describes the layout of the root block.

0| TSHORT |
o
e I
3| HrsizE |
o
5| CHECKSUM |
6| I
| hash |
| table |
~ ~
~ ~
~ N
SIZE-51 | |

SIZES0 | BMFLAG _ |

SIZE-49 | Bitmap |

| pages |
SIZE24| i
SIZE-23| DAYS |

=777~ B
SIZE-22| MINS |
SIZE-21]—__ TICKS ——:II
SIZE-20 | DISK |

SIZE-6 | CREATEMINS |

SIZE-5 }___CREATETICKSj|

SIZE4 | 0 |
SIZE3 | o |
sizg2 | 0 1

SIZE-1 | ST.ROOT |

Type
Header key (always zero)

Highest seq number (always zero)
Hashtable size (= blocksize-56)

TRUE if Bitmap on disk is valid

Used to indicate the blocks
containing the bitmap

Volume last altered
date and time

Volume name as a BCPL string

of <= 30 characters

Volume creation date
and time

Next entry on this hash chain (always zero)
Parent directory (always zero)

Extension (always zero)

Secondary type indicates root block

Figure 1-A: Root Block

236 AMIGADOS TECHNICAL REFERENCE MANUAL

1.1.2 User Directory Blocks

The following figure describes the layout of the contents of a user directory
block.

0l _TSHORT | Type
1 I':_C_)V_VI_\I_K_E_Y__ | Header key (pointer to self)
2y 0 Highest seq number (always zero)
3l o |
N
5| CHECKSUM |
6l |
| hash |
| table |
7~ re
- 7~
~ ~
~ ~
SIZE-51 | |

SIzE-50 | Spare |

SIZE-48 5 PROTECT i Protection bits

SIZE-47 | 0 | Unused (always zero)
SIZE-46 I_ AI
| COMMENT | Stored as a BCPL string
SIZE24,
SIZE-23 | __DAYS _ | Creation date and time
SIZE-22 | MINS |
SIZE-21 r __TICKS
SIZE-20 | DIRECTORY | Stored as a BCPL string
__NAME__ | of <= 30 characters
SIZE-4 | HASHCHAIN | Next entry with same hash value
SIZE-3 L__P:_ABEI\IF__ | Back pointer to parent directory
SIZE-2 0 Extension (always zero)

SIZE-1 | ST.USERDIR | secondary type

Figure 1-B: User Directory Blocks

FILING SYSTEM 237

User directory blocks have type T.SHORT and secondary type ST.USER-
DIRECTORY. The six information words at the start of the block also indicate the
block’s own key (that is, the block number) as a consistency check and the size
of the hash table. The 50 information words at the end of the block contain the
date and time of creation, the name of the directory, a pointer to the next file or
directory on the hash chain, and a pointer to the directory above.

To find a file or subdirectory, you must first apply a hash function to its
name. This hash function yields an offset in the hash table, which is the key of
the first block on a chain linking those with the same hash value (or zero, if
there are none). AmigaDOS reads the block with this key and compares the
name of the block with the required name. If the names do not match, it reads
the next block on the chain, and so on.

238 AMIGADOS TECHNICAL REFERENCE MANUAL

1.1.3 File Header Block
The following figure describes the layout of the file header block.

0/ TSHORT | Type

1 rl: OWN KEY :} Header key

2 LHIGHEST SEQ | Total number of data blocks in file

3| DATASIZE | Number of data block slots used

4 {: FIRST DATA j| First data block

ol |
7~
~
~ ~
~ ~
| DATA BLK 3 |
| DATABLK2 | list of data block keys
SIZE-51 | DATABLK 1 |

SIZE-50 I Spare

SIZE-48 L PROTECT] Protection bits

SIZE-47 | BYTE SIZE _{ Total size of file in bytes

SIZE-46 {- ________ |
| COMMENT | Comment as BCPL string
SIZE24,

SIZE-23 L DAYS _J Creation date aﬁd time

SIZE-22 | MINS |

sizé21 | TICKS

SIZE-20 | FILE | Stored as a BCPL string

| __NAME_ _ | of <= 30 characters
SIZE-4 | HASHCHAIN | Next entry with same hash value
SIZE-3 | PARENT | Back pointer to parent directory

SIZE-1 | ST.FILE | Secondary type

SIZE-2 L EXTENSION | Zero or pointer to first extension block

Figure 1-C: File Header Block

FILING SYSTEM 239

Each terminal file starts with a file header block, which has type T.SHORT
and secondary type ST.FILE. The start and end of the block contain name,
time, and redundancy information similar to that in a directory block. The
body of the file consists of Data blocks with sequence numbers from 1 up-
ward. AmigaDOS stores the addresses of these blocks in consecutive words
downward from offset size-51 in the block. In general, AmigaDOS does not
use all the space for this list and the last data block is not full.

1.1.4 File List Block

If there are more blocks in the file than can be specified in the block list, then
the EXTENSION field is nonzero and points to another disk block which
contains a further data block list. The following figure explains the structure of
the file list block.

ol TLST | Type

1 'l:_Q\LVy_K_El{_ i Header key

2 |BLOCK COUNT]| = number of data blocks in block list
3| DATASIZE | Same as above

4 IE FIRST DATA) First data block

6 | |
i 7
~ N
| BLOCKN+3 |
| BLOCKN+2 | Extended list of data block keys
SIZE-51 | BLOCKN+1 |
SIZE-50 |r —}
info (unused)
| |
SIZE4 | : : : :0: : : : | Next in hash list (always zero)
SIZE-3 | PARENT | File header block of this file

SIZE-2 {: EXTENSION jl Next extension block

SIZE-1 | ST.FILE | secondary type

Figure 1-D: File List Block

240 AMIGADQS TECHNICAL REFERENCE MANUAL

There are as many file extension blocks as required to list the data blocks that
make up the file. The layout of the block is very similar to that of a file header
block, except that the type is different and the date and filename fields are not
used.

1.1.5 Data Block

The following figure explains the layout of a data block.

0/ T.DATA | type

1{: HEADER] header key

2| SEQNUM | sequence number

4 {: NEXT DATA J next data block

6 |
|
|
|
I DATA
|
|

|
|
I
|
|
|
|
|

Figure 1-E: Data Block

Data blocks contain only six words of filing system information. These six
words refer to the following;:

* type (T.DATA)

* pointer to the file header block

* sequence number of the data block
» number of words of data

* pointer to the next data block

* checksum

Normally, all data blocks except the last are full (that is, they have a size =
blocksize-6). The last data block has a forward pointer of zero.

FILING SYSTEM 241

1.2 DISKED—The Disk Editor

To inspect or patch disk blocks, you may use the AmigaDOS disk editor,
DISKED. Because DISKED writes to the disk directly, you should use it with
care. Nevertheless, you can use it to good effect in recovering information from
a corrupt floppy disk, for example. A disk does not have to be inserted to be
examined by DISKED.

You should only use DISKED with reference to the layout of an AmigaDOS
disk. (For a description of the layout, see Subsections 1.1.1 through 1.1.5 in the
first part of this chapter.) DISKED knows about this structure—for example, the
R (Root Block) command prints the key of the root block. The G (Get block)
command followed by this key number reads the block into memory, where-
upon the I (Information) command prints out the information contained in the
first and last locations, which indicate the type of block, the name, the hash
links, and so on. If you specify a name after an H (Hash) command, DISKED
gives you the offset on a directory page that stores as the first key headers with
names that hash to the name you supplied. If you then type the number that
DISKED returns followed by a slash (/), DISKED displays the key of that
header page. You can then read this with further G commands, and so on.

Consider deleting a file that, due to hardware errors, makes the filing system
restart process fail. First, you must locate the directory page that holds the
reference to the file. You do this by searching the directory structure from the
root block, using the hash codes. Then, you must locate the slot that references
the file—this is either the directory block or a header block on the same hash
chain. This slot should contain the key of the file’s header block. To set the slot
to zero, you type the slot offset, followed by a slash (/) followed by zero (that
is, <offset>/0). Then correct the checksum with the K (checKsum) command.
You should disable the write protection with X and write back the updated
block with P (for Put block) or W (for Windup). There is no need to do
anything else, as the blocks that the file used in error become available once
more after the RESTART process has successfully scanned the disk.

DISKED commands are all single characters, sometimes with arguments.

The following is a complete list of the available commands.

242

AMIGADOS TECHNICAL REFERENCE MANUAL

The following is a complete list of the available commands.

Command
Bn

Cn

G [n]

H name

I

K

L[lwb upb]

Mn
N[lwb upb]
Pn

R

Q
S char

T lwb upb
Vn

w

X

Y n

Z

number
/[n]
‘chars’
“chars’’

Function

Set logical block number base to n

Display n characters from current offset

Get block n from disk (default is the current block number)
Calculate Hash value of name

Display block Information

Check block checKsum (and correct if wrong)

Locate words that match Value under Mask (Iwb and upb restrict
search)

Set Mask (for L and N commands) to n

Locate words that do not match Value under Mask

Put block in memory to block n on disk

(default is the current block number)

Display block number of root block

Quit (do not write to disk)

Set display Style

char = C -> characters
S -> string
O -> octal
X -> hex

D -> decimal
Type range of offsets in block
Set Value for L and N commands
Windup (=PQ)
Invert write protect state
Set cYlinder base to n
Zero all words of buffer
Set current word offset in block = Display values set in program
Display word at current offset or update value to n
Put chars at current offset
Put string at current offset

Table 1-A: DISKED Commands

To indicate octal or hex, you can start numbers with # or #X (that is, # for
octal, #X for hex). You can also include BCPL string escapes (*N and so forth)

in strings.

Chapter 2
Amiga Binary File Structure

This chapter describes:

2.1 Introduction
2.1.1 Terminology
2.2 Object File Structure
2.2.1 hunk__unit
2.2.2 hunk__name
2.2.3 hunk__code
2.2.4 hunk__data
2.2.5 hunk__bss
2.2.6 hunk__reloc32
2.2.7 hunk__relocl6
2.2.8 hunk__reloc8
2.2.9 hunk__ext
2.2.10 hunk__symbol
2.2.11 hunk_debug
2.2.12 hunk__end

2.3 Load Files
2.3.1 hunk__header
2.3.2 hunk__overlay
2.3.3 hunk__break
24 Examples

2.1 Introduction

Chapter 2 details the structure of Binary Object files for the Amiga, as
produced by assemblers and compilers. It also describes the format of Binary
Load files, which are produced by the linker and read into memory by the
loader. The format of load files supports overlaying. Apart from describing the

244 AMIGADOS TECHNICAL REFERENCE MANUAL

format of load files, this chapter explains the use of common symbols, absolute
external references, and program units.

2.1.1 Terminology

Some of the technical terms used in this chapter are explained below.

External References

You can use a name to specify a reference between separate program units.
The data structure lets you have a name longer than 16M bytes, although the
linker restricts names to 255 characters. When you link the object files into a
single load file, you must ensure that all external references match correspond-
ing external definitions. The external reference may be of byte size, word, or
long word; external definitions refer to relocatable values, absolute values, or
resident libraries. Relocatable byte and word references refer to PC relative
address modes and these are entirely handled by the linker. However, if you
have a program containing long word relocatable references, relocation may
take place when you load the program.

Note that these sizes only refer to the length of the relocation field; it is
possible to load a word from a long external address, for example, and the
linker makes no attempt to check that you are consistent in your use of
externals.

Object File

An assembler or compiler produces a binary image, called an object file.
An object file contains one or more program units. It may also contain
external references to other object files.

Load File

The linker produces a binary image from a number of object files. This
binary image is called a load file. A load file does not contain any
unresolved external references.

Program Unit

A program unit is the smallest element the linker can handle. A pro-
gram unit can contain one or more hunks; object files can contain one or
more program units. If the linker finds a suitable external reference
within a program unit when it inspects the scanned libraries, it includes
the entire program unit in the load file. An assembler usually produces a
single program unit from one assembly (containing one or more hunks); a
compiler such as FORTRAN produces a program unit for each subroutine,
main program, or Block Data. Hunk numbering starts from zero within

AMIGA BINARY FILE STRUCTURE 245

each program unit; the only way you can reference other program units is
through external references.

Hunks

A hunk consists of a block of code or data, relocation information, and a list
of defined or referenced external symbols. Data hunks may specify initialized
data or uninitialized data (bss). bss hunks may contain external definitions
but no external references nor any values requiring relocation. If you place
initialized data blocks in overlays, the linker should not normally alter these
data blocks, since it reloads them from disk during the overlay process. Hunks
may be named or unnamed, and they may contain a symbol table in order to
provide symbolic debugging information. They may also contain further
debugging information for the use of high level language debugging tools.
Each hunk within a program unit has a number, starting from zero.

Resident Library

Load files are also known as “libraries”. Load files may be resident in mem-
ory; alternatively, the operating system may load them as part of the “library
open” call. You can reference resident libraries through external references; the
definitions are in a hunk containing no code, just a list of resident library
definitions. Usually, to produce these hunks, you assemble a file containing
nothing but absolute external definitions and then pass it through a special
software tool to convert the absolute definitions to resident library definitions.
The linker uses the hunk name as the name of the resident library, and it
passes this through into the load file so that the loader can open the resident
library before use.

Scanned Library

A scanned library consists of object files that contain program units which
are only loaded if there are any outstanding external references to them. You
may use object files as libraries and provide them as primary input to the
linker, in which case the input includes all the program units the object files
contain. Note that you may concatenate object files.

Node

A node consists of at least one hunk. An overlaid load file contains a root
node, which is resident in memory all the time that the program is running,
and a number of overlay nodes which are brought into memory as required.

246 AMIGADOS TECHNICAL REFERENCE MANUAL

2.2 Object File Structure

An object file is the output of the assembler or a language translator. To use an
object file, you must first resolve all the external references. To do this, you
pass the object file through the linker. An object file consists of one or more
program units. Each program unit starts with a header and is followed by a
series of hunks joined end to end, each of which contains a number of “’blocks”
of various types. Each block starts with a long word which defines its type, and
this is followed by zero or more additional long words. Note that each block is
always rounded up to the nearest long word boundary. The program unit
header is also a block with this format.
The format of a program unit is as follows:

* Program unit header block
* hunks

The basic format of a hunk is as follows:

* hunk name block

« Relocatable block

» Relocation information block

* External symbol information block
* Symbol table block

* Debug block

« End block

You may omit all these block types, except the end block.

The following subsections describe the format of each of these blocks. The
value of the type word appears in decimal and hex after the type name, for
example, hunk__unit has the value 999 in decimal and 3E7 in hex.

2.2.1 hunk__unit (999/3E7)

This specifies the start of a program unit. It consists of a type word, followed
by the length of the unit name in long words, followed by the name itself
padded to a long word boundary with zeros, if required. In diagramatic form,
the format is as follows:

AMIGA BINARY FILE STRUCTURE 247

of

l |
} long words 1
| name |

Figure 2-A: hunk__unit (999/3E7)

2.2.2 hunk__name (1000/3E8)

This defines the name of a hunk. Names are optional; if the linker finds
two or more named hunks with the same name, it combines the hunks into a
single hunk. Note that 8- or 16-bit program counter relative external refer-
ences can only be resolved between hunks with the same name. Any external
references in a load format file are between different hunks and require 32-
bit relocatable references; although, as the loader scatterloads the hunks
into memory, you cannot assume that they are within 32K of each other.
Note that the length is in long words and the name block, like all blocks,
is rounded up to a long word boundary by padding with zeros. The format is
as follows:

of

| |
I long words I
| name |

Figure 2-B: hunk__name (1000/3E8}

2.2.3 hunk__code (1001/3E9)

This defines a block of code that is to be loaded into memory and possibly
relocated. Its format is as follows:

248 AMIGADOS TECHNICAL REFERENCE MANUAL

of

| |
I long words I
| code |

Figure 1-C: hunk__code (1001/3E9)

2.2.4 hunk__data (1002/3EA)

This defines a block of initialized data which is to be loaded into memory and
possibly relocated. The linker should not alter these blocks if they are part of
an overlay node, as it may need to reread them from disk during overlay
handling. The format is as follows:

of

| |
I long words {
| data |

Figure 1-D: hunk__data (1002/3EA)

2.2.5 hunk__bss (1003/3EB)

This specifies a block of uninitialized workspace which is allocated by the
loader. bss blocks are used for such things as stacks and for FORTRAN
COMMON blocks. It is not possible to relocate inside a bss block, but symbols
can be defined within one. Its format is as follows:

Figure 1-E: hunk__bss (1003/3EB)

AMIGA BINARY FILE STRUCTURE 249

where N is the size of block you require in long words. The memory used for
bss blocks is zeroed by the loader when it is allocated.

The relocatable block within a hunk must be one of hunk__code, hunk__
data, or hunk__bss.

2.2.6 hunk__reloc32 (1004/3EC)

A hunk__reloc32 block specifies 32-bit relocation that the linker is to perform
within the current relocatable block. The relocation information is a reference to
a location within the current hunk or any other within the program unit. Each
hunk within the unit is numbered, starting from zero. The linker adds the address
of the base of the specified hunk to each of the long words in the preceding relo-
catable block that the list of offsets indicates. The offset list only includes referenced
hunks and a count of zero indicates the end of the list. Its format is as follows:

|

I N2

s

Figure 2-F: hunk__reloc32 (1004/3EC)

250 AMIGADOS TECHNICAL REFERENCE MANUAL

2.2.7 hunk__relocl6 (1005/3ED)

A hunk__reloc 16 block specifies 16-bit relocation that the linker should perform
within the current relocatable block. The relocation information refers to 16 bit
program counter relative references to other hunks in the program unit. The
format is the same as hunk__reloc32 blocks. These references must be to hunks
with the same name, so that the linker can perform the relocation while it
coagulates (that is, gathers together) similarly named hunks.

2.2.8 hunk__reloc8 (1006/3EE)

A hunk__reloc8 block specifies 8-bit relocation that the linker should perform
within the current relocatable block. The relocation information refers to 8-bit
program counter relative references to other hunks in the program unit. The
format is the same as hunk__reloc32 blocks. These references must be to hunks
with the same name, so that the linker can perform the relocation while it
coagulates similarly named hunks.

2.2.9 hunk__ext (1007/3EF)

This block contains external symbol information. It contains entries both defin-
ing symbols and listing references to them. Its format is as follows:

Symbol {
|

Figure 2-G: hunk__ext (1007/3EF)

where there is one “symbol data unit” for each symbol used, and the block ends
with a zero word.

Each symbol data unit consists of a type byte, the symbol name length (three
bytes), the symbol name itself, and further data. You specify the symbol name
length in long words, and pad the name field to the next long word boundary
with zeros.

AMIGA BINARY FILE STRUCTURE 251

The type byte specifies whether the symbol is a definition or a reference, and
so forth. AmigaDOS uses values 0-127 for symbol definitions, and 128-255 for
references.

At the moment, the values are as follows:

Name Value Meaning

ext__symb 0 Symbol table—see symbol block below
ext__def 1 Relocatable definition

ext__abs 2 Absolute definition

ext__res 3 Resident library definition

ext__ref32 129 32-bit reference to symbol
ext_common 130 32-bit reference to COMMON
ext__refl6 131 16-bit reference to symbol

ext__ref8 132 8-bit reference to symbol

Table 2-A: External Symbols

The linker faults all other values. For ext__def there is one data word, the
value of the symbol. This is merely the offset of the symbol from the start of
the hunk. For ext__abs there is also one data value, which is the absolute value
to be added into the code. The linker treats the value for ext__res in the same
way as ext_def, except that it assumes the hunk name is the library name and it
copies this name through to the load file. The type bytes ext__ref32, ext__refl6,
and ext__ref8 are followed by a count and a list of references, again specified as
offsets from the start of the hunk.

The type ext_common has the same structure except that it has a COMMON
block size before the count. The linker treats symbols specified as common in
the following way: if it encounters a definition for a symbol referenced as
common, then it uses this value (the only time a definition should arise is in
the FORTRAN Block Data case). Otherwise, it allocates suitable bss space using
the maximum size you specified for each common symbol reference.

The linker handles external references differently according to the type of the
corresponding definition. It adds absolute values to the long word, or byte
field and gives an error if the signed value does not fit. Relocatable 32-bit
references have the symbol value added to the field and a relocation record is
produced for the loader. 16- and 8-bit references are handled as PC relative
references and may only be made to hunks with the same name so that the
hunks are coagulated by the linker before they are loaded. It is also possible for
PC relative references to fail if the reference and the definition are too far apart.
The linker may only access resident library definitions with 32-bit references,
which it then handles as relocatable 32-bit references. The symbol data unit
formats are as follows:

252 AMIGADOS TECHNICAL REFERENCE MANUAL

ext__def/abs/res
Figure 2-H: Symbol Data Unit

| |
| NL long words |
| of symbol name |

| |
| NL long words |
| of symbol name |

| 1
| NL long words |
| of symbol references |

| |
| NL long words |
| of symbol name |

| |
| NR long words |
| of symbol references |

AMIGA BINARY FILE STRUCTURE 253

2.2.10 hunk__symbol (1008/3F0)

You use this block to attach a symbol table to a hunk so that you can use a
symbolic debugger on the code. The linker passes symbol table blocks through
attached to the hunk and, if the hunks are coagulated, coagulates the symbol
tables. The loader does not load symbol table blocks into memory; when this is
required, the debugger is expected to read the load file. The format of the
symbol table block is the same as the external symbol information block with
symbol table units for each name you use. The type code of zero is used
within the symbol data units. The value of the symbol is the offset of the symbol
from the start of the hunk. Thus the format is as follows:

Figure 2-I: hunk__symbol (1008/3F0)

where each symbol data unit has the following format:

I NL long words |
of symbol name

Figure 2-J: Symbol Data Unit

254 AMIGADOS TECHNICAL REFERENCE MANUAL

2.2.11 hunk__debug (1009/3F1)

AmigaDOS provides the debug block so that an object file can carry further
debugging information. For example, high level language compilers may need
to maintain descriptions of data structures for use by high level debuggers. The
debug block may hold this information. AmigaDOS does not impose a format
on the debug block except that it must start with the hunk__debug long word
and be followed by a long word that indicates the size of the block in long words.
Thus the format is as follows:

| |
| long words |
| of |
| debug data |

Figure 2-K: hunk__debug (1009/3F1)

2.2.12 hunk__end (1010/3F2)

This specifies the end of a hunk. It consists of a single long word, hunk__end.

2.3 Load Files

The format of a load file (that is, the output from the linker) is similar to that of
an object file. In particular, it consists of a number of hunks with a similar
format to those in an object file. The main difference is that the hunks never
contain an external symbol information block, as all external symbols have
been resolved, and the program unit information is not included. In a simple
load file that is not overlaid, the file contains a header block which indicates
the total number of hunks in the load file and any resident libraries the
program referenced. This block is followed by the hunks, which may be the
result of coagulating a number of input hunks if they had the same name. This
complete structure is referred to as a node. Load files may also contain overlay
information. In this case, an overlay table follows the primary node, and a
special break block separates the overlay nodes. Thus the load file structure can
be summarized as follows, where the items marked with an asterisk (*) are
optional.

AMIGA BINARY FILE STRUCTURE 255

* Primary node
* Overlay table block (*)
* Overlay nodes separated by break blocks (*)

The relocation blocks within the hunks are always of type hunk__reloc32, and
indicate the relocation to be performed at load time. This includes both the 32-
bit relocation specified with hunk__reloc32 blocks in the object file and extra
relocation required for the resolution of external symbols.

Each external reference in the object files is handled as follows. The linker
searches the primary input for a matching external definition. If it does not find
one, it searches the scanned library and includes in the load file the entire
program unit where the definition was defined. This may make further exter-
nal references become outstanding. At the end of the first pass, the linker
knows all the external definitions and the total number of hunks that it is going
to use. These include the hunks within the load file and the hunks associated
with the resident libraries. On the second pass, the linker patches the long word
external references so that they refer to the required offset within the hunk
which defines the symbol. It produces an extra entry in the relocation block so
that, when the hunks are loaded, it adds to each external reference the base
address of the hunk defining the symbol. This mechanism also works for
resident libraries.

Before the loader can make these cross-hunk references, it needs to know the
number and size of the hunks in the nodes. The header block provides this
information, as described below. The load file may also contain overlay infor-
mation in an overlay table block. Break blocks separate the overlay nodes.

2.3.1 hunk__header (1011/3F3)

This block gives information about the number of hunks that are to be loaded,
and the size of each one. It also contains the names of any resident libraries
which must be opened when the node is loaded.

The format of the hunk__header is described in Figure 2-L. The first part of
the header block contains the names of resident libraries that the loader must
open when this node is loaded. Each name consists of a long word indicating
the length of the name in long words and the text name padded to a long word
boundary with zeros. The name list ends with a long word of zero. The names
are in the order in which the loader is to open them.

When it loads a primary node, the loader allocates a table in memory which
it uses to keep track of all the hunks it has loaded. This table must be large
enough for all the hunks in the load file, including the hunks in overlays. The
loader also uses this table to keep a copy of the hunk tables associated with any
resident libraries. The next long word in the header block is therefore this table
size, which is equal to the maximum hunk number referenced plus one.

256 AMIGADOS TECHNICAL REFERENCE MANUAL

The next long word F refers to the first slot in the hunk table the loader
should use when loading. For a primary node that does not reference a
resident library, this value is zero; otherwise, it is the number of hunks in the
resident libraries. The loader copies these entries from the hunk table associ-
ated with the library following a library open call. For an overlay node, this
value is the number of hunks in any resident libraries plus the number of
hunks already loaded in ancestor nodes.

The next long word L refers to the last hunk slot the loader is to load as part
of this loader call. The total number of hunks loaded is therefore L - F + 1.

| N1 long words |
| of name |

| of name |

Figure 2-L: hunk__header (1011/3F3)

The header block continues with L - F + 1 long words which indicate the
size of each hunk which is to be loaded as part of this call. This enables the
loader to preallocate the space for the hunks and hence perform the relocation
between hunks which is required as they are loaded. One hunk may be the bss
hunk with a size given as zero; in this case the loader uses an operating system
variable to give the size as described in hunk__bss on page 248.

AMIGA BINARY FILE STRUCTURE 257

2.3.2 hunk__overlay (1013/3F5)

The overlay table block indicates to the loader that it is loading an overlaid
program, and contains all the data for the overlay table. On encountering it,
the loader sets up the table, and returns, leaving the input channel to the load
file still open. Its format is as follows:

| Overlay |
| data |
| table |

Figure 2-M: hunk__overlay (1013/3F5)

The first long word is the upper bound of the complete overlay table (in
long words).

M is the maximum level of the overlay tree uses with the root level being
zero. The next M + 1 words form the ordinate table section of the overlay
table.

The rest of the block is the overlay data table, a series of eight-word entries,
one for each overlay symbol. If 0 is the maximum overlay number used, then
the size of the overlay data table is (0 + 1)*8, since the first overlay number is
zero. So, the overlay table size is equal to (0 + 1)*8 + M + 1.

2.3.3 hunk__break (1014/3F6)

A break block indicates the end of an overlay node. It consists of a single
long word, hunk__break.

2.4 Examples

The following simple sections of code show how the linker and loader handle
external symbols. For example,

258 AMIGADOS TECHNICAL REFERENCE MANUAL

IDNT A
XREF BILLY, JOHN
XDEF MARY

* The next long word requires relocation
0000’ 0000 0008 DC.L FRED
0004’ 123C OOFF MOVE.B #$FFD1

0008’ 7001 FRED MOVEQ #1,D0
*External entry point
OO0A’4E71 MARY NOP

000C’ 4EB9 0000 0000
0012’ 8239 0000 0000

JSR BILLY Call external
MOVE.L JOHN,D1 Reference external
END

produces the following object file:

hunk __unit

00000001
41000000

hunk__code

00000006

Size in long words
Naine, padded to long word

Size in long words

00000008 123CO0FF 70014E71 4EB90000 00002239 00000000
hunk-reloc32

00000001 Number in hunk O
00000000 hunk O

00000000 Offset to be relocated
00000000 Zero to mark end
hunk__ext

01000001 XDEF, Size 1 long word
4D415259 MARY

0000000A. Offset of definition
81000001 XREF, Size 1 long word
4A4F484E JOHN

00000001 Number of references
00000014 Offset of reference
81000002 XREF, Size & long words
42494C4C BILLY

59000000 (zeros to pad)
00000001 Number of references
0OOO000CE Offset, of reference
00000000 End of external block
hunk__end

The matching program to this is as follows:

AMIGA BINARY FILE STRUCTURE 259

IDNT B
XDEF BILLY,JOHN
XREF MARY

0000’ 2A3C AAAA AAAA MOVEL #$AAAAAAAADS
* External entry point
0006’ 4E71 BILLY NOP
* External entry point
0008’ 7201 JOHN MOVEQ #1D1
*Call external reference
O00A’ 4EF9 0000 0000 JMP MARY
END

and the corresponding output code would be:

hunk__unit

00000001 Size in long words
42000000 Unit name

hunk _code

00000004 Size in long words
RQASCAAAA AAAA4E7?] 72014EF9 00000000
hunk_ ext

01000001 XDEF, Size 1 long word
4A4F484F JOHN

00000008 Offset of definition
01000002 XDEF, Size 2 long words
42494C4C BILLY

59000000 (zeros to pad)
000000086 Offset of definition
81000001 XREF, Size 1 long word
4D415259 MARY

00000001 Number of references
0000000C Offset of reference
00000000 End of external block
hunk end

Once you passed this through the linker, the load file would have the
following format:

hunk_ header

00000000 No hunk name
00000002 Size of hunk table
00000000 First hunk
00000001 Last hunk

260 AMIGADOS TECHNICAL REFERENCE MANUAL

00000006 Size of hunk O

- 00000004 Size of hunk 1
hunk__code
00000006 Size of code in long words
00000008 123COOFF 70014E71 4EB90000 00062239 00000008
hunk relocdR
00000001 Number in hunk O
00000000 hunk O
00000000 Offset to be relocated
00000002 Number in hunk 1
00000001 hunk 1
00000014 Offset to be relocated
0000000E Offset to be relocated
00000000 Zero to mark end
hunk__end
hunk code
00000004 Size of code in long words
RA3CAAAA AAAA4ET] 72014EF9 O000000A
hunk_.reloc32
00000001 Number in hunk O
00000000 hunk O
0000000C Offset to be relocated
00000000 Zero o mark end
hunk_ end

When the loader loads this code into memory, it reads the header block and
allocates a hunk table of two long words. It then allocates space by calling an
operating system routine and requesting two areas of sizes 6 and 4 long words
respectively. Assuming the two areas it returned were at locations 3000 and
7000, the hunk table would contain 3000 and 7000.

The loader reads the first hunk and places the code at 3000; it then handles
relocation. The first item specifies relocation with respect to hunk 0, so it adds
3000 to the long word at offset 0 converting the value stored there from 00000008
to 00003008. The second item specifies relocation with respect to hunk 1.
Although this is not loaded, we know that it will be loaded at location 7000, so
this is added to the values stored at 300E and 3014. Note that the linker has
already inserted the offsets 00000006 and 00000008 into the references in hunk
0 so that they refer to the correct offset in hunk 1 for the definition. Thus the
long words specifying the external references end up containing the values
00007006 and 00007008, which is the correct place once the second hunk is
loaded.

In the same way, the loader loads the second hunk into memory at location

AMIGA BINARY FILE STRUCTURE 261

7000 and the relocation information specified alters the longword at 700C from
0000000A (the offset of MARY in the first hunk) to 0000300A (the address of
MARY in memory).

The loader handles references to resident libraries in the same way, except
that, after it has opened the library, it copies the locations of the hunks
comprising the library into the start of the hunk table. It then patches refer-
ences to the resident library to refer to the correct place by adding the base of
the library hunks.

Chapter 3
AmigaDOS Data Structures

This chapter describes AmigaDOS data structures in memory and in files. It
does not describe the layout of a disk, which is described in Chapter 1.

3.1 Introduction

3.2 Process Data Structures
3.3 Global Data Structure
3.3.1 Info Substructure

3.4 Memory Allocation

3.5 Segment Lists

3.6 File Handles

3.7 Locks

3.8 Packets

3.8.1 Packet Types

3.1 Introduction

AmigDOS provides device independent input and output. It achieves this by
creating a handler process for each device you use. The handler process
accepts a standard set of I/O requests and converts these to device specific
requests where required. All AmigaDOS clients refer to the handler process
rather than the device directly, although it is possible to use a device without
the handler if this is required. This chapter describes the data structures within
AmigaDOS, including the format of a process, central shared data structures,
and the structure of handler requests.

In addition to normal Amiga values such as LONG and APTR, AmigaDOS
uses BPTR. BPTR is a BCPL pointer, which is a pointer to a long word-aligned
memory block divided by 4. So, to read a BPTR in C, you simply shift left by 2.
To create a BPTR, you must either use memory obtained via a call to AllocMem
or a structure on your stack when you know you have only allocated long words

AMIGADOS DATA STRUCTURES 263

on the stack so far (the initial stack is long word aligned). You should then shift
this pointer right by 2 to create the BPTR.

AmigaDOS also has a BSTR, which is a BCPL string. BSTR consists of a
BPTR to memory that contains the length of the string in the first byte, and the
bytes within the string following.

A number of references to the Global Vector appear within this chapter. The
Global Vector is a jump table used by BCPL and is a pointer to a standard
shared Global Vector. Some processes, such as the file handler, use a private
global vector.

The include files dos.h and dosextens.h contain C language definitions for
the following structures. The .i files for assembly language.

3.2 Process Data Structures

These values are created as part of an AmigaDOS process; there is a complete
set for each process.

A process is an Exec task with a number of extra data structures appended.
The process structure consists of:

Exec task structure
Exec message port
AmigaDOS process values

The process identifier AmigaDOS uses internally is a pointer to the Exec
message port (from which the Exec task may be obtained).
AmigaDOS process values are as follows:

Value Function Description

BPTR SegArray Array of SegLists used by this process
LONG StackSize Size of process stack in bytes

APTR GlobVec Global Vector for this process

LONG TaskNum CLI Task number or zero if not a CLI

BPTR StackBase Pointer to high memory end of process stack
LONG IoErr Value of secondary result from last call
BPTR CurrentDir Lock associated with current directory

BPTR CIS Current CLI input stream

BPTR COSs Current CLI output stream

APTR CoHand Console handler process for current window
APTR FiHand File handler process for current drive

BPTR CLIStruct Pointer to additional CLI information

APTR ReturnAddr Pointer to previous stackframe

APTR PktWait Function to be called when awaiting message

APTR WindowPtr Pointer to window

264 AMIGADQS TECHNICAL REFERENCE MANUAL

To identify the segments that a particular process uses, you use SegArray.
SegArray is an array of long words with its size in SegArray[0]. Other elements
are either zero or a BPTR to a SegList. CreateProc creates this array with the
first two elements of the array pointing to resident code and the third element
being the SegList passed as argument. When a process terminates, FreeMem is
used to return the space for the SegArray.

StackSize indicates the size of the process stack, as supplied by the user
when calling CreateProc. Note that the process stack is not the same as the
command stack a CLI uses when it calls a program. The CLI obtains its
command stack just before it runs a program and you may alter the size of this
stack with the STACK command. When you create a process, AmigaDOS
obtains the process stack and stores the size in StackSize. The pointer to the
space for the process control block and the stack is also stored in the MemEntry
field of the task structure. When the process terminates this space is returned
via a call to FreeMem. You can also chain any memory you obtain into this list
structure so that it, too, gets put back when the task terminates.

If a call to CreateProc creates the process, GlobVec is a pointer to the Shared
Global Vector. However, some internal handler processes use a private GlobVec.

The value of TaskNum is normally zero; a CLI process stores the small
integer that identifies the invocation of the CLI here.

The pointer StackBase points to the high-memory end of the process stack.
This is the end of the stack when using languages such as C or Assembler; it is
the base of the stack for languages such as BCPL.

The values of IoErr and CurrentDir are those handled by the similarly named
AmigaDOS calls. CIS and COS are the values Input and Output return and
refer to the file handles you should use when running a program under the
CLI. In other cases CIS and COS are zero.

CoHand and FiHand refer to the console handler for the current window and
the file handler for the current device. You use these values when attempting
to open the * device or a file by a relative path name.

The CLIStruct pointer is nonzero only for CLI processes. In this case it refers
to a further structure the CLI uses with the following format:

Value Function Description

LONG Result2 Value of IoErr from last command

BSTR SetName Name of current directory

BPTR CommandDir Lock associated with command directory
LONG ReturnCode Return code from last command

BSTR CommandName Name of current command

LONG FaillLevel Fail level (set by FAILAT)

BSTR Prompt Current prompt (set by PROMPT)

BPTR StandardIn Default (terminal) CLI input

BPTR Currentln Current CLI input

AMIGADOS DATA STRUCTURES 265

Value Function Description

BSTR CommandFile = Name of EXECUTE command file
LONG Interactive Boolean; True if prompts required
LONG Background Boolean; True if CLI created by RUN
BPTR CurrentOut Current CLI output

LONG DefaultStack Stack size to be obtained (in long words)
BPTR StandardOut Default (terminal) CLI output
BPTR Module SegList of currently loaded command

The Exit function uses the value of ReturnAddr which points to just above
the return address on the currently active stack. If a program exits by perform-
ing an RTS on an empty stack, then control passes to the code address pushed
onto the stack by CreateProc or by the CLI. If a program terminates with a call
to Exit, then AmigaDOS uses this pointer to extract the same return address.

The value of PktWait is normally zero. If it is nonzero, then AmigaDOS calls
PktWait whenever a process is about to go to sleep to await a signal indicating
that a message has arrived. In the same way as GetMsg, the function should
return a message when one is available. Usually, you use this function to filter
out any private messages arriving at the standard process message port that
are not intended for AmigaDOS.

The value of WindowPtr is used when AmigaDOS detects an error that
normally requires the user to take some action. Examples of these errors are
attempting to write to a write-protected disk, or when the disk is full. If the
value of WindowPtr is -1, then the error is returned to the calling program as
an error code from the AmigaDOS call of Open, Write, or whatever. If the
value is zero, then AmigaDOS places a request box on the Workbench screen
informing the user of the error and providing the opportunity to retry the
operation or to cancel it. If the user selects cancel, then AmigaDOS returns the
error code to the calling program. If the user selects retry, or inserts a disk,
then AmigaDOS attempts the operation once more.

If you place a positive value into the WindowPtr field, then AmigaDOS takes
this to be a pointer to a Window structure. Normally you would place the
Window structure of the window you are currently using here. In this case,
AmigaDOS displays the error message within the window you have specified,
rather than using the Workbench screen. You can always leave the WindowPtr
field as zero, but if you are using another screen, then the messages AmigaDOS
displays appear on the Workbench screen, possibly obscured by your own screen.

The initial value of WindowPtr is inherited from the process that created the
current one. If you decide to alter WindowPtr from within a program that runs
under the CLI, then you should save the original value and restore it when you
finish; otherwise, the CLI process contains a WindowPtr that refers to a
window that is no longer present.

266 AMIGADOS TECHNICAL REFERENCE MANUAL

3.3 Global Data Structure

This data structure only exists once; however, all AmigaDOS processes use it.
If you make a call to OpenLibrary, you can obtain the library base pointer. The
base of the data structure is a positive offset from the library base pointer. The
library base pointer points to the following structure:

Library Node structure

APTR to DOS RootNode

APTR to DOS Shared Global Vector
DOS private register dump

All internal AmigaDOS calls use the Shared Global Vector, which is a jump
table. You should not normally use it, except through the supplied interface
calls, as it is liable to change without warning.

The RootNode structure is as follows:

Value Function Description

BPTR TaskTable Array of CLI processes currently running
BPTR CLISegList SegList for the CLI

LONG Days Number of days in current time

LONG Mins Number of minutes in current time
LONG Ticks Number of ticks in current time

BPTR RestartSeg SeglList for the disk validator process
BPTR Info Pointer to the Info substructure

The TaskTable is an array with the size of the array stored in TaskTable[0].
The processid (in other words, the MsgPort associated with the process) for
each CLI is stored in the array. The process id for the CLI with TaskNum “n” is
stored in TaskTable[n]. An empty slot is filled with a zero. The commands
RUN and NEWCLI scan the TaskTable to identify the next free slot, and use
this as the TaskNum for the CLI created.

The CLISegList is the SegList for the code of the CLI. RUN and NEWCLI use
this value to create a new instance of a CLIL.

The rootnode stores the current date and time; normally you should use the
AmigaDOS function DateStamp to return a consistent set of values. The values
Days, Mins, and Ticks specify the date and time. The value of Days is the
number of days since January 1st, 1978. The value of Mins is the number of
minutes since midnight. A tick is one fiftieth of a second, but the time is only
updated once per second.

The RestartSeg is the SegList for the code of the disk validator, which is a
process that AmigaDOS creates whenever you insert a new disk into a drive.

AMIGADOS DATA STRUCTURES 267

3.3.1 Info Substructure

To access a further substructure with the following format, you use the Info
pointer.

Value Function Description

BPTR McName Network name of this machine; currently zero
BPTR DevInfo Device list

BPTR Devices Currently zero

BPTR Handlers Currently zero

APTR NetHand Network handler process id, currently zero

Most of the fields in the Info substructure are empty at the moment, but
Commodore-Amiga intend to use them for expanding the system.

The DevInfo structure is a linked list. You use it to identify all the device
names that AmigaDOS knows about; this includes ASSIGNed names and disk
volume names. There are two possible formats for the list entries depending on
whether the entry refers to a disk volume or not. For an entry describing a
device or a directory (via ASSIGN) the entry is as follows:

Value Function Description

BPTR Next Pointer to next list entry or zero

LONG Type List entry type (device or dir)

APTR Task Handler process or zero

BPTR Lock File system lock or zero

BSTR Handler File name of handler or zero

LONG StackSize Stack size for handler process

LONG Priority Priority for handler process

LONG Startup Startup value to be passed to handler process
BPTR SeglList SeglList for handler process or zero

BPTR GlobVec Global Vector for handler process or zero
BSTR Name Name of device or ASSIGNed name

The Next field links all the list entries together, and the name of the logical
device name is held in the Name field.

The Type field is 0 (dt_device) or 1 (dt_dir). You can make a directory entry
with the ASSIGN command. This command allocates a name to a directory that
you can then use as a device name. If the list entry refers to a directory, then
the TASK refers to the file system process handling that disk, and the Lock
field contains a pointer to a lock on that directory.

If the list entry refers to a device, then the device may or may not be
resident. If it is resident, the Task identifies the handler process, and the Lock

268 AMIGADOS TECHNICAL REFERENCE MANUAL

is normally zero. If the device is not resident, then the TASK is zero and
AmigaDOS uses the rest of the list structure.

If the SegList is zero, then the code for the device is not in memory. The
Handler field is a string specifying the file containing the code (for example,
SYS:L/RAM-HANDLER). A call to LoadSeg loads the code from the file and
inserts the result into the SegList field.

AMigaDOS now creates a new handler process with the SegList, StackSize,
and Pri values. The new process is a BCPL process and requires a Global
Vector; this is either the value you specified in GlobVec or a new private global
vector if GlobVec is zero.

The new process is passed a message containing the name originally
specified, the value stored in Startup and the base of the list entry. The
new handler process may then decide to patch into the Task slot the process
id or not as required. If the Task slot is patched, then subsequent refer-
ences to the device name use the same handler task; this is what the
RAM: device does. If the Task slot is not patched, then further references
to the device result in new process invocations; this is what the CON: device
does.

If the Type field within the list entry is equal to 2 (dt_volume), then the format
of the list structure is slightly different.

Value Function Description

BPTR Next Pointer to next list entry or zero
LONG Type List entry type (volume)

APTR Task Handler process or zero

BPTR Lock File system lock

LONG VolDays Volume creation date

LONG VolMins

LONG VolTicks

BPTR LockList List of active locks for this volume
LONG DiskType Type of disk

LONG Spare Not used

BSTR Name Volume name

In this case, the Name field is the name of the volume, and the Task field
refers to the handler process if the volume is currently inserted; or to zero if the
volume is not inserted. To distinguish disks with the same name, AmigaDOS
timestamps the volume on creation and then saves the timestamp in the list
structure. AmigDOS can therefore compare the timestamps of different vol-
umes whenever necessary.

If a volume is not currently inserted, then AmigaDOS saves the list of cur-
rently active locks in the LockList field. It uses the DiskType field to identify

AMIGADOS DATA STRUCTURES 269

the type of disk. Currently, this is always an AmigaDOS disk. The disk type
is up to four characters packed into a long word and padded on the right
with nulls.

3.4 Memory Allocation

AmigaDOS obtains all the memory it allocates by calling the AllocMem func-
tion provided by Exec. In this way, AmigaDOS obtains structures such as locks
and file handles; it usually places them back in the free pool by calling
FreeMem. Each memory segment allocated by AmigaDOS is identified by a
BPIR to the second long word in the structure. The first long word always
contains the length of the entire segment in bytes. Thus the structure of
allocated memory is as follows:

Value Function Description
LONG BlockSize Size of memory block
LONG FirstData First data segment, BPTR to block points here

3.5 Segment Lists

To obtain a segment list, you call LoadSeg. The result is a BPTR to allocated
memory, so that the length of the memory block containing each list entry is
stored at -4 from the BPTR. This length is 8 more than the size of the segment
list entry, allowing for the link field and the size field itself.

The SegList is a list linked together by BPTRs and terminated by zero. The
remainder of each segment list entry contains the code loaded. Thus the format
is

Value Function Description
LONG NextSeg BPTR to next segment or zero
LONG FirstCode First value from binary file

3.6 File Handles

File handles are created by the AmigaDOS function Open, and you use them
as arguments to other functions such as Read and Write. AmigaDOS returns
them as a BPTR to the following structure:

270 AMIGADOS TECHNICAL REFERENCE MANUAL

Value Function Description

LONG Link Not used

LONG Interact Boolean, TRUE if interactive

LONG ProcessID Process id of handler process

BPTR Bulffer Buffer for internal use

LONG CharPos Character position for internal use
LONG BufEnd End position for internal use

APTR ReadFunc Function called when buffer exhausted
APTR WriteFunc Function called when buffer full

APTR CloseFunc Function called when handle closed
LONG Argl : Argument; depends on file handle type
LONG Arg2 Argument; depends on file handle type

Most of the fields are only used by AmigaDOS internally; normally Read or
Write uses the file handle to indicate the handler process and any arguments to
be passed. Values should not be altered within the file handle by user pro-
grams, except that the first field may be used to link file handles into a singly
linked list.

This description does NOT match dosextens.h or .i. Use the include file
information instead.

3.7 Locks

The filing system extensively uses a data structure called a lock. This structure
serves two purposes. First, it serves as the mechanism to open files for multi-
ple reads or a single write. Note that obtaining a shared read lock on a
directory does not stop that directory being updated.

Second, the lock provides a unique identification for a file. Although a
particular file may be specified in many ways, the lock is a simple handle on
that file. The lock contains the actual disk block location of the directory or file
header and is thus a shorthand way of specifying a particular file system
object. The structure of a lock is as follows:

Value Function Description

BPTR NextLock BPTR to next in chain, else zero

LONG DiskBlock Block number of directory or file header
LONG AccessType Shared or exclusive access

APTR ProcessID Process id of handler task

BPTR VolNode Volume entry for this lock

Because AmigaDOS uses the NextLock field to chain locks together, you
should not alter it. The filing system fills in DiskBlock field to represent the

AMIGADOS DATA STRUCTURES 271

location on disk of the directory block or the file header block. The AccessType
serves to indicate whether this is a shared read lock, when it has the value -2,
or an exclusive write lock when it has the value -1. The Process ID field
contains a pointer to the handler process for the device containing the file to
which this lock refers. Finally the VolNode field points to the node in the
Devinfo structure that identifies the volume to which this lock refers. Volume
entries in the DevInfo structure remain there if a disk is inserted or if there are
any locks open on that volume.

Note that a lock can also be a zero. The special case of lock zero indicates
that the lock refers to the root of the initial filing system, and the FiHand field
within the process data structure gives the handler process.

3.8 Packets

Packet passing handles all communication performed by AmigaDOS between
processes. A packet is a structure built on top of the message-passing mecha-
nism provided by the Exec kernel.

An Exec message is a structure, described elsewhere, that includes a Name
field. AmigaDOS uses the field as an APTR to another section of memory
called a packet. A packet must be long word aligned, and has the following
general structure.

Value Function Description

APTR MsgPtr Pointer back to message structure

APTR MsgPort Message port where the reply should be sent
LONG PktType Packet type

LONG Resl First result field

LONG Res2 Second result field

LONG Argl Argument; depends on packet type

LONG Arg2 Argument; depends on packet type

LONG ArgN Argument; depends on packet type

The format of a specific packet depends on its type; but in all cases, it
contains a back pointer to the Message structure, the MgsPort for the reply,
and two result fields. When AmigaDOS sends a packet, the reply port is
overwritten with the process identifier of the sender so that the packet can be
returned. Thus, when sending a packet to an AmigaDOS handler process, you
must fill in the reply MsgPort each time; otherwise, when the packet returns,
AmigaDOS has overwritten the original port. AmigaDOS maintains all other
fields except the result fields.

All AmigaDOS packets are sent to the message port created as part of a

272 AMIGADOS TECHNICAL REFERENCE MANUAL

process; this message port is initialized so that arriving messages cause signal 8
to be set. An AmigaDOS process which is waiting for a message waits for
signal 8 to be set. When the process wakes up because this event has occurred,
GetMsg takes the message from the message port and extracts the packet
address. If the process is an AmigaDOS handler process, then the packet
contains a value in the PkiType field which indicates an action to be per-
formed, such as reading some data. The argument fields contain specific
information such as the address and size of the buffer where the characters
go.
When the handler process has completed the work required to satisfy this
request, the packet returns to the sender, using the same message structure.
Both the message structure and the packet structure must be allocated by the
client and must not be deallocated before the reply has been received. Nor-
mally AmigaDOS is called by the client to send the packet, such as when a call
to Read is made. However, there are cases when asynchronous IO is required,
and in this case the client may send packets to the handler processes as
required. The packet and message structures must be allocated, and the
processid field filled in with the message port where this packet must return.
A call to PutMsg then sends the message to the destination. Note that many
packets may be sent out returning to either the same or different message
ports.

3.8.1 Packet Types

AmigaDOS supports the following packet types. Not all types are valid to all
handlers, for example a rename request is only valid to handlers supporting a
filing system. For each packet type the arguments and results are described.
The actual decimal code for each type appears next to the symbolic name. In all
cases, the Res2 field contains additional information concerning an error (indi-
cated by a zero value for Resl in most cases). To obtain this additional
information, you can call IoErr when making a standard AmigaDOS call.

Open 01d File
Type LONG Action.FindInput (1008)

Argl BPTR FileHandle
Arg2 BPTR Lock
Arg3 BSTR Name

Resl LONG Boolean
Attempts to open an existing file for input or output (see the function Open

in Chapter 2, “Calling AmigaDOS,” of the AmigaDOS Developer’s Manual in this
book for further details on opening files for I/O). To obtain the value of lock,

AMIGADOS DATA STRUCTURES 273

you call DeviceProc to obtain the handler Processld and then IoErr which
returns the lock. Alternatively the lock and Processld can be obtained directly
from the DevInfo structure. Note that the lock refers to the directory owning
the file, not to the file itself.

The caller must allocate and initialize FileHandle. This is done by clearing all
fields to zero except for the CharPos and BufEnd fields which should be set to
-1. The ProcessID field within the FileHandle must be set to the process id of
the handler process.

The result is zero if the call failed, in which case the Res2 field provides more
information on the failure and the FileHandle should be released.

Open New File
Type LONG Action. FindOutput (1006)

Argl BPTR FileHandle
Arg2 BPTR Lock
Arg3 BSTR Name

Resl LONG Boolean
Arguments as for previous entry.

Read
Type LONG Action.Read (82)

Argl BPTR FileHandle Argl
Arg? APTR Buffer
Argd LONG Length

Resl LONG Actual Length

To read from a file handle, the process id is extracted from the ProcessID
field of the file handle, and the Argl field from the handle is placed in the Argl
field of the packet. The buffer address and length are then placed in the other
two argument fields. The result indicates the number of characters read—see
the function Read for more details. An error is indicated by returning -1
whereupon the Res2 field contains more information.

Write
Type LONG Action.Write (87)

Argl BPTR FileHandle Argl
Arg? APTR Buffer
Argd LONG Length

Resl LONG Actual Length

274 AMIGADOS TECHNICAL REFERENCE MANUAL

The arguments are the same as those for Read. See the Write function for
details of the result field.

Close

Type LONG Action.End (1007)

Argl BPTR FileHandle Argl

Resl LONG TRUE

You use this packet type to close an open file handle. The process id of the
handler is obtained from the file handle. The function normally returns TRUE.

After a file handle has been closed, the space associated with it should be
returned to the free pool.

Seek
Type LONG Action.Seek (1008)

Argl BPTR FileHandle Argl
Arg?2 LONG Position
Arg3 LONG Mode

Resl LONG OldPosition

This packet type corresponds to the SEEK call. It returns to the old position,
or -1 if an error occurs. The process id is obtained from the file handle.

WaitChar

Type LONG Action.WaitChar (20)

Argl LONG Timeout

Resl LONG Boolean

This packet type implements the WaitForChar function. You must send the
packet to a console handler process, with the timeout required in Argl. The
packet returns when either a character is waiting to be read, or when the

timeout expires. If the result is TRUE, then at least one character may be
obtained by a subsequent READ.

ExamineObject
Type LONG Action.ExamineObject (33)

Argl BPTR Lock
Arg? BPTR TFileInfoBlock

Resl LONG Boolean

AMIGADOS DATA STRUCTURES 275

This packet type implements the Examine function. It extracts the process id
of the handler from the ProcessID field of the lock. If the lock is zero, then it
uses the default file handler, which is kept in the FiHand field of the process.
The result is zero if it fails, with more information in Res2. The FileInfoBlock
returns with the name and comment fields as BSTRs.

ExamineNext
Type LONG Action.ExamineNext (24)

Argl BPTR Lock
Arg2 BPTR FileInfoBlock

Resl LONG Boolean

This call implements the ExNext function, and the arguments are similar to
those for Examine above. Note that the BSTR representing the filename must
not be disturbed between calls of ExamineObject and different calls to
ExamineNext, as it uses the name as a place saver within the directory being
examined.

DiskInfo
Type LONG Action.DiskInfo (25)

Argl BPTR InfoData
Resl LONG TRUE

This implements the Info function. A suitable lock on the device would
normally obtain the process id for the handler. This packet can also be sent to a
console handler process, in which case the Volume field in the InfoData
contains the window pointer for the window opened on your behalf by the
console handler.

Parent
Type LONG Action.Parent (29)

Argl BPTR Lock
Resl LONG ParentLock

This packet returns a lock representing the parent of the specified lock, as
provided by the ParentDir function call. Again it must obtain the process id of
the handler from the lock, or from the FiHand field of the current process if the
lock is zero.

276 AMIGADOS TECHNICAL REFERENCE MANUAL

DeleteObject
Type LONG Action.DeleteObject (16)

Argl BPTR Lock
ArgZ BSTR Name

Resl LONG Boolean

This packet type implements the Delete function. It must obtain the
lock from a call to IoErr() immediately following a successful call to Device-
Proc which returns the process id. The lock actually refers to the directory
owning the object to be deleted, as in the Open New and Open Old
requests.

CreateDir
Type LONG Action.CreateDir (22)

Argl BPTR Lock
Arg2 BSTR Name

Resl BPTR Lock

This packet type implements the CreateDir function. Arguments are the
same as for DeleteObject. The result is zero or a lock representing the new
directory.

LocateObject
Type LONG ActionLocateObject (8)

Argl BPTR Lock
Arg? BSTR Name
Arg3 LONG Mode

Resl BPTR Lock

This implements the lock function and returns the lock or zero. Arguments
as for CreateDir with the addition of the Mode as Arg3. Mode refers to the type
of lock, shared or exclusive.

CopyDir
Type LONG Action.CopyDir (19)

Argl BPTR Lock
Resl BPTR Lock

AMIGADOS DATA STRUCTURES 277

This implements the DupLock function. If the lock requiring duplication is
zero, then the duplicate is zero. Otherwise, the process id is extracted from the
lock and this packet type sent. The result is the new lock or zero if an error was
detected.

FreeLock
Type LONG Action.FreeLock (15)

Argl BPTR Lock
Resl LONG Boolean

This call implements the UnLock function. It obtains the process id from the
lock. Note that freeing the zero lock takes no action.

SetProtect
Type LONG Action.SetProtect (21)

Argl Notused

Arg?2 BPTR Lock
Argd BSTR Name
Arg4 LONG Mask

Resl LONG Boolean

This implements the SetProtection function. The lock is a lock on the owning
directory obtained from DeviceProc as described for DeleteObject above. The
least significant four bits of “Mask” represent Read, Write, Execute, and Delete
in that order. Delete is bit zero.

SetComment
Type LONG Action.SetComment (28)

Argl Notused

Arg?2 BPTR Lock
Arg3 BSTR Name
Arg4 BSTR Comment

Resl LONG Boolean

This implements the SetComment function. Arguments as for SetProtect
above, except that Arg4 is a BSTR representing the comment.

278 AMIGADOS TECHNICAL REFERENCE MANUAL

RenameObject
Type LONG Action.RenameObject (17)

Argl BPTR FromLock
Arg2 BPTR FromName
Argd BPTR ToLock
Argd BPTR ToName

Resl LONG Boolean

This implements the Rename function. It must contain an owning directory
lock and a name for both the source and the destination. The owning directories
are obtained from DeviceProc as mentioned under the entry for the DeleteObject.

Inhibit
Type LONG ActionInhibit (31)

Argl LONG Boolean
Resl LONG Boolean

This packet type implements a filing system operation that is not available as
an AmigaDOS call. The packet contains a Boolean value indicating whether
the filing system is to be stopped from attempting to verify any new disks
placed into the drive handled by that handler process. If the Boolean is
true, then you may swap disks without the filesystem process attempting to
verify the disk. While disk change events are inhibited, the disk type is
marked as “Not a DOS disk” so that other processes are prevented from
looking at the disk.

If the Boolean is false, then the file system reverts to normal after having
verified the current disk in the drive.

This request is useful if you wish to write a program such as DISKCOPY
where there is much swapping of disks that may have a half completed
structure. If you use this packet request then you can avoid having error messages
from the disk validator while it attempts to scan a half completed disk.

RenameDisk

Type LONG Action.RenameDisk (9)
Argl BPTR NewName

Resl BPTR Boolean

Again, this implements an operation not normally available through a func-
tion call. The single argument indicates the new name required for the disk
currently mounted in the drive handled by the filesystem process where the
packet is sent. The volume name is altered both in memory and on the disk.

Chapter 4

AmigaDOS Additional
Information for the Advanced
Developer

This chapter describes certain topics which are likely to be of interest to the
advanced developer who may wish to create new devices to be added to the
Amiga or who wish their code to run with Amiga computers which have been
expanded beyond a 512K memory size.

. The following topics are covered here:

Overlay Hunk Description
for developers putting together large programs

ATOM utility
works on a new binary file format to change allow developer to set the
appropriate load bits. Assures that program code and data that must be
resident in CHIP memory (the lowest 512K of the system) for the program
to function will indeed be placed there by AmigaDOS when it is loaded.
Otherwise the program code may not work on an extended memory
machine.

Linking in a new DISK-device to AmigaDOS
lets a developer add a hard disk or disk-like device as a name-addressable
part of the filing system.

Linking in a new non-disk-device to AmigaDOS
lets a developer add such things as additional serial ports, parallel ports,
graphics tablets, RAM-disks or what-have-you to AmigaDOS (non filing
system related).

Using AmigaDOS without using Intuition
for developers who may prefer to install and use their own screen han-
dling in place of that provided by Intuition.

280 AMIGADOS TECHNICAL REFERENCE MANUAL

Hunk Overlay Table—QOverview

When overlays are used, the linker basically produces one very large file
containing all of the object modules as hunks of relocatable code. The hunk
overlay table contains a data structure that describes the hunks and their
relationship to each other.

When you are designing a program to use overlays, you must keep in mind
how the overlay manager (also called the overlay supervisor) handles the
interaction between the various segments of the file. What you must do,
basically, is build a tree that reflects the relationships between the various code
modules that are a part of the overall program and tell the linker how this tree
should be constructed.

The hunk overlay table is generated as a set of 8 long words, each describ-
ing a particular overlay node that is part of the overall file. Each 8 long word
entry is comprised of the following data:

HUNK OVERLAY SYMBOL TABLE-ENTRY DATA STRUCTURE:

long seekOffset; /* where in the file to find this node */

long dummyl; /* a value of 0 . . . compatibility item */
long dummy?2; f* a value of 0 . . . compatibility item */
long level; /* level in the tree */

long ordinate; /* item number at that level */

long firstHunk; /* hunk number of the first hunk containing

* this node. */

long symbolHunk; /* the hunk number in which this symbol is
* located */

long symbolOffsetX; /* (offset + 4), where offset is the offset
* within the symbol hunk at which this
* symbol’s entry is located. */

Each of these items is explained further in the sections that follow.

Designing an Overlay Tree

Let’s say that you have, for example, the files main, a, b, ¢, d, e, f, g, h, i, and j,
and that main can call a,b,c, and d and that each of these files can call main.
Additionally let’s say that routine e can be called from a,b,c,d, or main, but has
no relationship to routine f. Thus, if a routine in e is to be run, then a,b,c, and
d need to be memory-resident as well. Routine f is like e; that is, it needs
nothing in e to be present, but can be called from a, b, ¢, or d. This means that
the overlay manager can share the memory space between routines e and f,
since neither need ever be memory-coresident with the other in order to run.

If you consider routine g to share the same space as the combination of a,b,c,
and d and routines h,i, and j sharing the same space, you have the basis for
constructing the overlay tree for this program structure:

AMIGADOS ADDITIONAL INFORMATION 281

main (root level of the tree)

l
a,b,c,d (1,1) g (1,2)
| | []

e21) £2.2) h2,1l) iR2) j23)

Not only have we drawn the tree, but we have labeled its branches to match
the hunk overlay (level, ordinate) numbers that are found in the hunk overlay
table that matches the nodes to which they are assigned.

From the description above, you can see that if main is to call any routine in
program segment a—d, then all of those segments should be resident in mem-
ory at the same time. Thus they have all been assigned to a single node by the
linker. While a-d are resident, if you call routines in e, the linker will automati-
cally load routine e from disk, and reinitialize the module (each time it is again
brought in), so that its subroutines will be available to be run. If any segment
a-d calls a routine in f, the linker replaces e with the contents of f and
initializes it. Thus a—d are at level 1 in the overlay tree, and routines e and f are
at level 2, requiring that a—d be loaded before e or f can be accessed and loaded
for execution.

Note: A routine can only perform calls to routines in other nodes which
either are currently memory resident (the ancestors of the node in which the
routine now in use is located), or a routine in a direct child node. That is, main
cannot call e directly, but e can call routines in main since main is an ancestor.

Note also that within each branch of each subnode, the ordinate numbers
begin again with, number 1 for a given level.

Describing the Tree

You create the tree by telling the overlay linker about its structure. The
numerical values, similar to those noted in the figure above, are assigned
sequentially by the linker itself and appear in the hunk node table. Here is the
sequence of overlay link statements that cause the figure above to be built:

OVERLAY
a,b,c,d

*f

This description tells the linker that a,b,c,d are part of a single node at a
given level (in this case level 1), and the asterisk in front of e and f each say
that these are one each on the next level down from a-d, and accessible only
through a~d or anything closer toward the root of the tree. The name g has no
asterisk, so it is considered on the same level as a-d, telling the linker that

282 AMIGADOS TECHNICAL REFERENCE MANUAL

either a—d or g will be memory-resident, but not both simultaneously. Names
h,i, and j are shown to be related to g, one level down.

The above paragraphs have explained the origin of the hunk node level and
the hunk ordinate in the hunk overlay symbol table.

Seek Offset Amount

The first value for each node in the overlay table is the seek offset. As
specified earlier, the overlay linker builds a large single file containing all of the
overlay nodes. The seek offset number is that value that can be given to the
seek(file, byte__offset) routine to point to the first byte of the hunk header of a
node.

initialHunk

The initialHunk value in the overlay symbol table is used by the overlay
manager when unloading a node. It specifies the initial hunk that must have
been loaded in order to have loaded the node that contains this symbol. When
a routine is called at a different level and ordinate (unless it is a direct, next
level, child of the current node), it will become necessary to free the memory
utilized by invalid hunks, so as to make room to overlay with the hunk(s)
containing the desired symbol.

SymbolHunk and SymbolOffsetX

These table entries for the symbols are used by the overlay manager to
actually locate the entry point once it has either determined it is already loaded
or has loaded it. The symbolHunk shows in which hunk to locate the symbol.
SymbolOffsetX-4 shows the offset from the start of that hunk at which the
entry point is actually located.

ATOM: (Alink Temporary Object Modifier)

This document describes the ATOM utility, including its development history,
the manner in which it has been implemented, and alternatives to its use.

The ““problem”:

Programmers need/want to be able to specify that parts of their program go
into “chip” memory (the first 512K) so that the custom chips can access it.
They also need/want to treat this data just like any other data in their program
and therefore have it link and load normally.

Previous Solutions

The recommended way of dealing with this was to do an AllocMem with the
chip memory bit set and copy data from where it was loaded (“fast” memory)
to where it belonged (chip memory), then use pointers to get to it. This
involved having two copies of your data in memory, the first loaded with your
program, the second copied into the first 512K of memory.

The other “solution” is to have the program not run in machines with more
than 512K. This should quickly become an unacceptable solution.

AMIGADOS ADDITIONAL INFORMATION 283

The ATOM Solution

1. Compile or assemble normally.

2. Pass the object code through a post- (or pre-) processor called “ATOM”.
ATOM will interact with the user and the object file(s). It will flag the
desired hunks (or all hunks) as “for chip memory” by changing the hunk
type.

3. The linker will now take nine (9) hunk types instead of 3. The old types
were hunk__code, hunk__data, and hunk__bss. The new ones will be:

hunk__code__chip = hunk code + bit 30 set
hunk__code__fast = hunk__code + bit 31 set
hunk__data__chip = hunk__data + bit 30 set
hunk__data_ fast hunk_data + bit 31 set
hunk__bss__chip hunk_bss + bit 30 set
hunk__bss__fast hunk__bss + bit 31 set

The linker will pass all hunk types through to the LOADER (coagulating if
necessary). The LOADER uses the hunk header information when loading.
You will recall from the information provided in the linker documentation

that CODE hunks contain executable (68000) machine language, DATA
hunks contain initialized data (constants, . ..) and BSS hunks contain
unintialized data (arrays, variable declarations, . . .).

4. The LOADER will load according to information from step 3 above. Hunks
will go into the designated memory type.

5. Old versions of the LOADER will interpret the new hunk types as VERY
large hunk and not load (error 103, not enough memory).

onn

Future Solutions

The assembler and Lattice “C” may be changed to generate the new hunk
types under programmer control.

How the Bits Work

The hunk size is a word containing the number of words in the hunk. There-
fore, for the foreseeable future, including 32-bit address space machines, the
upper 2 bits are unused. The bits have been redefined as follows:

Bit31 MEMF__FAST

| [Bit30 MEMF__CHIP

0 0 If neither bit is set, then get whatever memory is available; this is
“backward” compatible. Preference is given to “Fast” memory.

1 0 Loader must get FAST memory, or fail.

0 1 Loader must get CHIP memory, or fail.

1 1 If Bit31 and Bit30 are both set, then there is extra information
available following this long word. This is reserved for future ex-
pansion, as needed. It is not currently used.

284 AMIGADOS TECHNICAL REFERENCE MANUAL

Perceived Impact

Old programs, programs that have not been compiled or assembled with the
new options, and programs that have not been run through ATOM will run (or
not run) as well as ever. This includes crashing in extended memory, if poorly
programmed. The “previous solutions” mentioned at the beginning of this
chapter still hold.

Program development and test on a 512K machine could follow EXACTLY
the same loop you have now—edit, compile, link, execute, test, edit, . . .
UNTIL you are about to release. Then you edit, compile, ATOM, Alink, add
external memory (>512K) and test. This works well for all three environments
(Amiga, IBM, and Sun).

For native (Amiga) development on a >512K machine you may want to
ATOM the few required object files so you can both run your linked program
in an extended memory machine and take advantage of a large RAM: disk. The
development cycle then becomes: edit, compile, optionally ATOM (if this code
or data contains items needed by the blitter), link, exteute, test, edit. . . .

“New programs” will not load in a V1.0 Kickstart environment. The result
will be error 103 (not enough memory).

Old (V1.0 and before) versions of dumpobj and OMD will not work on files
after ATOM has been run on them.

Working Environment

To get all of this to work together you need Release 1.1 compatible copies of:
ATOM (Version 1.0 or later)

Alink (Version 3.30 or later)

Kickstart (Release 1.1 or later) for DOS LOADER.

DumpObj (Version 2.1) Needed if you wish to examine programs modified by
ATOM.

ATOM Command Line Syntax
The command line syntax is:
ATOM <infile> <outfile> [-I]
or
ATOM <infile> <outfile> [-C[CIDIB]] [-F[CIDIB]] [-P[CIDIB]]
Where:
<infile> Represents an object file, just compiled, assembled or ATOMed
(Yes, you can re-ATOM an object file).
<outfile> The destination for the converted file.
-C Change memory to CHIP

-F Change memory to FAST
-P Change memory to “Public”’. (Any type of memory available.)

AMIGADOS ADDITIONAL INFORMATION 285

C Change CODE hunks
D Change DATA hunks
B Change BSS hunks

Command Line Examples
Example #1

In most cases there is no need to place CODE hunks in chip memory. Some-
times DATA and BSS hunks do need to be placed in chip memory; therefore
the following is a fairly common usage of ATOM. To cause all Code hunks to
go into Public RAM, Data and BSS hunks to go into chip RAM type:

ATOM infile.obj outfile.obj -pc -cdb
Example #2

To cause all the hunks in object file to be loaded into chip memory type:
ATOM infile.obj outfile.obj -¢

Example #3

To set all data hunks to load into chip memory type:
atom myfile.o myfile.set.o -cd

Example #4

This is an interactive example. User input is in lower case, computer output is
in upper case. In this example the code hunk is set to “Fast”, the data hunk is
set to “Chip”. There were no BSS hunks. Note that help was requested in the
beginning.

> atom from.o from.set -i
AMIGA OBJECT MODIFIER V1.0

UNIT NAME FROM

HUNK NAME NONE

HUNK TYPE CODE {Note: code hunk}
MEMORY ALLOCATION PUBLIC

DISPLAY SYMBOLS [Y/N]y

—base..

—Xcovf.

__CXD22..

—pbrintf.

—main...

MEMORY TYPE? [FiclP] 2 {Note: request for help}

Please enter F for fast
C for Chip Memory type.
P for Public

286

AMIGADOS TECHNICAL REFERENCE MANUAL

Q to quit
W to windup

' N for Next hunk
MEMORY TYPE? [FiclP)

UNIT NAME 0000
HUNKNAME NONE

HUNK TYPE DATA

MEMORY ALLOCATION PUBLIC
DISPLAY SYMBOLS? [Y/N] n
MEMORY TYPE? [FCP] ¢

UNIT NAME 0000

HUNKNAME NONE

HUNK TYPE BSS

MEMORY ALLOCATION PUBLIC
DISPLAY SYMBOLS? [Y/N]y

MEMORY TYPE? [FICP] p
2>__

Error Messages

{cancels the operation, no output file is
created}

{does not change the rest of the file,
just passes it through}

{skip this hunk, show next}

{Note: data hunk}

Error Bad Args:
a) An option does not start with a
b) wrong number of parameters
c) “~ not followed by I, C, F, or P.
d) -x supplied in addition to -1, etc.

9" orr

Error Bad infile:
File not found.

Error Bad Outfile:
File cannot be created.

Error Bad Type ##:

ATOM has detected a hunk type that it does not recognize. The object file

miay be corrupt.

Error empty input:
Input file does not contain any data.

Error ReadExternals:

External reference or definition if of an undefined type. Object file may be

corrupt.
Error premature end of file:

An end of file condition (out of data) was detected while ATOM was still
expecting input. Object file may be corrupt.

AMIGADOS ADDITIONAL INFORMATION 287

Error This utility can only be used on files that have NOT been passed through
ALINK:
The input file you specified has already been processed by the linker.
External symbols have been removed and hunks coagulated. You need to
run ATOM on the object files produced by the C compiler or Macro
Assembler BEFORE they are linked.

Creating a New Device to Run Under AmigaDOS

This section provides information about adding devices that are NOT part of
the DOS filing system. The next section provides information about adding
file-system-related devices (hard disks, floppy disks)—that is, devices that DOS
can use to read and write files with their associated directories.

You would want to use this information to add a new device such as a new
serial port or a new parallel port. In this case you may be creating a device
named “SER2:"” which is to act just like “SER:” as far as DOS is concerned.

There are two steps involved here. First, you must create a suitable device, a
process that is not addressed here.

Note: The code for creating a skeleton disk-resident device is contained in
the Amiga ROM Kernel Manual.

Second, you must make this new device available as an AmigaDOS device.
This process involves writing a suitable device handler (see ROM Kernel Man-
ual) and installing it into the AmigaDOS structures.

This installation is handled by creating a suitable device-node structure for
your new device. This is similar to creating a DevInfo slot for a new disk
device, except that the startup argument can be anything you want. The
Segment list slot is zero, and the file name of your disk-resident device handler
is placed in the Filename slot.

0 Next

0 dt__device

0 Task (or process id—see below)
0 Lock

BSTR Filename of handler code

NNN Stacksize required

NN Priority required

XXX Startup information

0 SegList (nonzero if you load the code)
0 Global vector required

BSTR Device Name

The device handler is the interface between your device and an application
program. This is normally written in BCPL, and the AmigaDOS kernel will
attempt to load the code of the handler and create a new process for it when it
is first referenced. This is handled automatically when the kernel notices that
the Task field in the DevInfo structure is zero. If the code is already loaded, the
code segment pointer is placed in the SegList field. If this field is zero, the

288 AMIGADOS TECHNICAL REFERENCE MANUAL

kernel loads the code from the filename given in the Filename field and
updates the SeglList field.

If you want this automatic loading and process initialization to work, you
must create a code module, which is written in BCPL or is written in assembler
to look like a BCPL module. This ensures that the dynamic linking used by the
kernel will work correctly

If you are writing in assembler, the format of the code section must be as
shown below. Note that you may use DATA and BSS sections, but each section
must have the same format as described here.

StartModule DC.L (EndModule-StartModule)/4 Size of module in 1 words
EntryPoint
... (your code) '
CNOP 0 4 Align to 1word boundary

DCL O End marker

DCL 1 Define Global 1
DC.L EntryPoint-StartModule Offset of entry point
DCL 1 Highest global used
END

In assembler, you will be started with register D1 holding a BCPL pointer to
the initial packet passed from the kernel.

If you are writing in BCPL, a skeleton routine will appear as follows. The
main job of the device handler is to convert Open, Read, Write, and Close
requests into the device read and write requests. Other packet types are
marked as an error.

“Include files containing useful constants”

GET “LIBHDR”
GET “IOHDR”
GET “MANHDR”
GET “EXECHDR”

This is a handler for a skeleton Task.
When the task is created, the parameter packet contains the following:

parm.pktlpkt.argl = BPTR to BCPL string of device name, (i.e., “SKEL:"”)
parm.pktlpkt.arg? = extra info (if needed)

parm.pktipkt.argd = BPTR to device info node

MANIFEST

$(

IO.blocksize = 30 (size of devices IO blocks)

$)

LET start (parm.pkt) BE

$(

LET extrainfo = parm.pkt!pkt.arg2

AMIGADOS ADDITIONAL INFORMATION 289

LET read.pkt =0

LET writepkt = 0
LET openstring = parm.pkt!pkt.argl
LET inpkt VEC pkt.resl

LET outpkt VEC pkt.resl

LET IOB = VEC IO.blocksize

LET IOBO = VEC IO.blocksize

LET error = FALSE

LET devname = “serial.device*X00”

LET open = FALSE (flag to show whether device has been “opened”
with act.findinput or act.findoutput).

LET node = parm.pkt!pkt.arg3

(Zero the block first so that we can see what goes into it when we call
Opendevice.)

FOR i=0 TO IO.blocksize DO IOB!i:= O
IF OpenDevice (I0B, devname, O, 0) = O THEN error : = TRUE

IF error THEN
$(returnpkt (parm.pkt,FALSE,error,objectinuse)
return

)
(Copy all the necessary info to the Output buffer too.)
FOR i=0 TO IO.blocksize DO IOBO4 : = I0Bl

outpktipkt.type : = act.write
inpktipkt.type : = act.read
nodeldev.task : = taskid() (Insert process id into device node.)

(Finished with parameter packet . . . send back. . . .)
returnpkt (parm.pkt, TRUE)
(This is the main repeat loop waiting for an event.)

$(LET p = taskwait ()
SWITCHON p!pkt.type INTO
$(
CASE act.findinput: {Open.)
CASE act.findoutput:
$(LET scb = plpkt.argl
open := TRUE
scblscb.id := TRUE (Interactive.)
returnpkt (p,TRUE)
LOOP
$

290 AMIGADOS TECHNICAL REFERENCE MANUAL

CASE act.end: (Close.)
nodeldev.task := O (Remove process id from device node.)
open := FALSE
returnpkt (p,TRUE)
LOOP

CASE act.read: (Read request returning.)
inpkt :=p
handle.return (I0BO,read.pkt)
LOOP

CASE act.write: (Write request returning.)
outpkt := p
handle.return(IOBO,write.pkt)
LOOP

CASE ‘R (A read request.)
read.pkt:= p
handle.request(IOB,I0C.read,p,inpkt)
inpkt := O
LOOP
CASE ‘W™ (A write request.)
writepkt :=p
handle.request(I0B0O,I0C.write,p,outpkt)
outpkt := O
LOOP
DEFAULT:

UNLESS open DO nodeldev.task : = O (Remove process id unless open.)
$

$) REPEATWHILE open | outpkt = O |inpkt = 0

Termination

CloseDevice(1I0B)

(Handle an IO request. Passed command, transmission packet (tp) and
request packet (rp). rp contains buffer and length in arg2/3.) AND handle.
request (IOB, command rp, tp) BE

LET buff = rplpkt.argd

LET len = rplpkt.argsd

SetIO(IOB, command, ?, rplpkt.args, O)

putlong (IOB, I0.data, buff)

SendIO(IOB, tp)

Handle a returning IO request. The user request packet is passed as p, and must
be returned with success/failure message. AND handle.return (IOB, p) BE
$(

LET errcode = IOB O.error

LET len = getlong(IOB, I0.actual)

AMIGADOS ADDITIONAL INFORMATION 291

TEST errcode = O THEN (No error.)
returnpkt(p, len)

ELSE
returnpkt(p, —1, errcode)

If you wish to write your device handler in C, you cannot use the automatic
load and process creation provided by the kernel. In this case, you must load
the code yourself and use a call to CreateProc to create a process. The result
from this call should be stored in the Task field of the DevInfo structure. You
must then send a message to the new process to get it started. This message
might contain such things as the unit number of the device involved. The
handler process should then wait for Open, Read, Write, and Close calls and
handle them as described in the example above. C code does not need to insert
the process id into the device node because this is done when code is loaded,
as described above.

Making New Disk Devices

To create a new disk device, you must construct a new device node as
described in Section 3.3.1 of the AmigaDOS Technical Reference Manual. You
must also write a device driver for the new disk device.

A device driver for a new disk device must mimic the calls that are per-
formed by the trackdisk device (described in the Amiga ROM Kernel Manual). It
must include the ability to respond to commands such as Read, Write, Seek, and
return status information in the same way as described for the trackdisk driver.

For the following description, note that most pointers are of the type BPTR (as
described earlier in the AmigaDOS Technical Reference Manual), a machine pointer
to some long word-aligned memory location (such as returned by AllocMem)

shifted right by two.
Construct the new node with the following fields:
0 Next
0 dt__device
0 Task
0 Lock
0 Handler
210 Stacksize
10 Priority
BPTR to startup info
Seglist
0 Global vector

BSTR to name

The BSTR to a name is a BCPL pointer to the name of your new device (such
as HDO:) represented as the length of the string in the first byte, and the
characters following.

The Seglist must be the segment list of the filing system task. To obtain

292 AMIGADOS TECHNICAL REFERENCE MANUAL

this, you must access a field in the process base of one of the filing system
tasks.
The code as follows can be used for this purpose:

UBYTE *port;
port = DeviceProc(“DFO:"); /* Returns msg port of
filesystem task */
task = (struct Task *) (port-sizeof(struct Task); /* Task structure is

below port, */

list = { task.pr_ Seglist) /* make machine ptr
from SegArray */

segl = list[3]; /* Third element in
SegArray is filesystem
seglist */

Next, you must set up the startup info (again, remember to use BPTRs
where needed). This info consists of a BPTR to three long words which
contain:

* Unit number (do not use unit zero)

« Device driver name, stored as a BPTR to the device driver name which
must be terminated by a null byte which is included in the count (e.g.,
4/'H’/'D’/*O’/0) BPTR to disk information
The disk size information contains the following long word fields:

11 Size of table
128 Disk block size in long words (assuming 512-byte
blocksize)
0 Sector origin (i.e., first sector is sector zero)
Number of surfaces (e.g., 2 for floppy disk)
1 Number of sectors per bleck
Number of blocks (e.g. 11 for floppy disk)
per track
2 (or more, indicating number of blocks to be reserved
at start)
0 Preallocation factor
0 Interleave factor
Lowest cylinder (commonly 0)
number
Highest cylinder (e.g., 79 for floppy disk)
number
5 (or more, indicating number of cache blocks)

Finally, the device node must be attached to the end of the list (note the
Next fields are all BPTRs) of device nodes within the Info substructure.

AMIGADOS ADDITIONAL INFORMATION 293

WARNING: The list to which this refers is NOT the same kind of list
that is referenced in the Exec portion of the Amiga ROM Kernel Manual,
but is instead the kind of list described in this book.

To partition a hard disk you make two or more device nodes and set the
lowest and highest cylinder numbers to partition the disk as desired.

Using AmigaDOS Without Workbench/Intuition

This information is provided to give developers some information about how
AmigaDOS and Intuition interact with each other. As of this writing, it is not
possible to fully close down Intuition or the input device. It is possible to install
one’s own input handler within the input stream (as is demonstrated in the
Amiga ROM Kernel Manual, Input Device description) and thereby handle input
events yourself, after your program has been loaded and started by AmigaDOS.
If, after that point, you take over the machine in some manner, you can
prevent AmigaDOS from trying to put up system requesters or otherwise
interacting with the screen by modifying DOS as shown below. Basically, your
own program must provide alternate ways to handle errors that would nor-
mally cause DOS to put up a requester.

Another alternative for taking over the machine is to ignore the AmigaDOS
filing system altogether, and use the trackdisk.device to boot your code and
data on your own. You will find details about the disk boot block and the track
formatting in the Amiga ROM Kernel Manual, allowing this alternate means if
you so choose.

Here are the details about AmigaDOS and Intuition:

AmigaDOS initializes itself and opens Intuition. It then attempts to open the
configuration file (created by Preferences) and passes this to Intuition. It then
opens the initial CLI window via Intuition and attempts to run the first CLI
command. This is commonly a loadwb (load Workbench), followed by an
endcli on the initial CLI.

An application program can be made to behave like Workbench, in that it
spawns a new process. The next CLI command is then endcli, which closes
everything down, leaving only the new process running (along with the
filesystem processes). This process would set the pr_WindowPtr field to -1,
which indicates that the DOS should report errors quietly. Note that the
application MUST handle all errors. There are further details on this in Chapter
3. DOS will also have initialized the TrapHandler field of the user task to point
to code that will display a requester after an error; this should be replaced by a
user-provided routine. This will stop all uses of Intuition from the user task,
provided there are no serious memory corruption problems found, in which
case DOS will call Exec Alert directly.

There is still the problem that the filesystem processes may ask for a re-
quester, in the event of a disk error or if the filesystem task crashes due to

294 AMIGADOS TECHNICAL REFERENCE MANUAL

memory corruption. To stop this, the pr__WindowPtr and tc__TrapHandler
fields of the filesystem tasks must be set to -1 and a private Trap handler must
be provided in the same way as was done for the user task. This is easily done
as shown below.

Find the message port for each filesystem task by calling DeviceProc(),
passing DF0, DF1, etc. An error indicates that the device is not present. From
the message port you can find the task base for each filesystem task, and hence
patch these two slots. This should be repeated for each disk unit.

The application program can now close Intuition. Workbench has, of course,
never been invoked. Note that as of this writing, it is not possible to stop DOS
from opening Intuition.

Note that if the applications want to use any other device such as SER:, the
handler process must be patched in exactly the same way as the filesystem
processes. The application should obviously not attempt to open the CON: or
RAW: once Intuition has become inactive.

Index

Absolute (symbol), 193

Address, 187

Address modes, 195-196

Address registers, 187

Address variant, 196

ALINK (developer’s command), 84-85,
168-169, 207, 209-211

Arguments, 6, 50, 119, 152, 153

ASCII literal numbers, 194

ASSEM (developer’s command), 85-86

Assembler, 160, 188-189

Assembly control directives, 198-199

Assembly language, 85-86

ASSIGN (user’s command), 36-37, 43

ATOM (Alink Temporary Object Modifier),
282-287

Binary file structure, 243-261
Binary numbers, 194

Block control, 97-99

Boolean returns, 171, 175

Boot, 40

Bootable disk. See Disk, bootable
Bracket characters, 59

Branches, 187

BREAK (user’'s command), 4344
Break block, 257

C, initial environment in, 160
Calling (AmigaDOS), 170-185
CD (user’s command), 4445
Character pointer, 152
Character string, 152

CLI. See Command Line Interface
Close (call packet), 274

Close function, 171-172
Command definition, 152
Command file structures, 59-62
Command files, 17-18, 136
Command formats, 18-21
Command groups, 121

Command input and output, 18, 31

Command line, 208

Command Line Interface (CLI), 5, 22, 37-38,
53, 72-74, 81, 88-89, 152, 159-161, 264266

Command names, 118-119

Command sequence, 78-79, 89

Command syntax, 118-121, 209

Command template, 152

Commands, background, 17, 77

Commands, commonly used, 21-22, 23-24

Commands, developer’s, 84-88, 89

Commands, execution of, 5, 17-18, 54-63, 77, 183

Commands, extended, 95-96, 103-104

Commands, immediate, 92, 102-103

Commands, recognition of, 6

Commands, repetition of, 95, 101-102, 115

Commands, use of, 16-17

Commands, user’s, 40-84, 88-89

Comments, 190, 192

Conditional assembly directives, 203-204

Conditionals, 66

Console handler. See Terminal handler

Control combination, 152

COPY (user’s command), 4546

CopyDir (call packet), 276-277

CreateDir (call packet), 276

CreateDir (function), 172, 276

CreateProc (function), 181, 264, 265

Cross development, 162-169

CTRL-X (control combination), 5-6, 152

Current device, 9-11

Current directory, 8-10, 27, 39, 153, 172

Current drive, 10, 153

Current line, 109-111, 112-113, 122, 125-126,
130-134, 141-142, 153

Current string, 153

CurrentDir (function), 172

Cursor control, 92

Cursor position, 99, 152

Data block, 240, 248
Data definition directives, 200201

296

INDEX

Data registers, 187

Data structures, 262-278

DATA (user’s command), 30, 46-47

Dates, 30, 46-47, 181

DateStamp (function), 181

Debug block, 254

Decimal numbers, 194

Default, 40

Default parameters, 58-59

Delay (function), 182

DELETE (user’s command), 47-48

DeleteFile (function), 172-173

DeleteObject (call packet), 276

Delimiter characters, 153

Destination file, 153

Device names, 11-13, 40, 43, 153, 267

DeviceProc (function), 182

Devices, logical. See Logical devices

DIR (user’'s command), 4849

Directives, 196-206

Directories, 7-10, 27-28, 4345, 47-48, 69-72,
153

Directory blocks, 236-237

Directory conventions, 14-16

Directory creation, 34, 172

Directory deletion, 172-173

Directory examination, 173-174

Directory locking, 175-176, 179-180

Directory names, 76, 178

Directory parent, 177

Directory protection, 179

Disk, bootable, 26, 28

Disk copying, 25

Disk, floppy, 65

Disk formatting, 25-26

Disk information, 174

Disk relabeling, 27

DISKCOPY (user’s command), 49-50

DISKED (disk editor), 241-242

Diskette assignation, 36-37

DiskInfo (call packet), 275

DOWNLOAD (developer’s command), 86-87

Downloading programs, 86-87

DupLock (function), 173, 277

ECHO (user’s command), 50-51

ED (user’s command), 51-52, 90-104

EDIT (user’s command), 52-53

Editing. See Line editor; Screen editor

ENDCLI (user’s command), 53

End-of-file handling, 124

Errors, 63, 75, 83-84, 147-152, 161, 175,
211-212, 217

Examine (function), 173, 275

ExamineNext (call packet), 275

ExamineObject (call packet), 274-275

Exchanging, 99-100

Execute (function), 183

EXECUTE (user’s command), 5463
Exit, 182, 265

ExNext (function), 173-174
Expressions, 192-194

Extended mode, 91, 153

External references, 244

External symbols, 205-206, 251, 258

FAILAT (user’'s command), 63-64
Failures. See Errors

FAULT (user’s command), 64

File copy simulation, 59-62

File copying, 33-34

File data, 177, 180

File definition, 153

File deletion, 32, 172-173

File examination, 173

File formation, 68

File handles, 41, 175, 176, 269-270, 273-274
File handling, 171-180

File header block, 238-239

File linking, 84-85

File list block, 239-240

File location, 34-35

File locking, 175-176, 179-180

File opening, 176

File parent, 177

File protection, 179

File structure, 234, 243-261

File system, 6-16, 29-30, 67, 234-241
File utilities, 88

Filename, 6-7, 32, 76, 153, 178
FILENOTE (user's command), 11, 64-65
Floppy disk. See Disk, floppy
FORMAT (user’s command), 65
FreeLock (call packet), 277
Functions, 171-184

Global data structure, 266-269
Global operations, 139-140

Handler process, 262
Hexadecimal numbers, 194
Hunks, 245, 246-261

Hunk Overlay Table, 280-282

IF (user’'s command), 6667
Immediate mode, 91, 153

Info (function), 174, 275

INFO (user’s command), 67-68
Info substructure, 267-269
Inhibit (call packet), 278

INDEX

297

Input (function), 175

Input, console, 218-231

Input files, 136-137, 175

INSTALL (user’'s command), 68-69
Instructions, 187, 190-192, 196
Interruption, 18

IoErr, 175

IsInteractive (function), 175

Jumps, 187

Keyboard input, 219-220, 224
Keywords, 18-20, 153

LAB (user’s command), 69

Labels, 69, 190-191

Letter case, 170

Libraries, 158, 170-185, 208, 245, 256, 266
Library base pointer, 266

Line deletions, 113, 114, 126-127

Line editor, 52-53, 105-154

Line insertions, 114-115, 126-127

Line numbers, 109-110, 120, 122123, 143
Line splitting and joining, 133-134

Line windows, 128-130, 153

Linker, 84-85, 168-169, 207-231, 257
Linking, new disk device, 291-293
Linking, new non-disk device, 293-294
LIST (user’s command or directive), 28, 69-72
Listing control directives, 201-203

Load file, 207, 244, 255-257

Loader, 257, 261

Loading code, 183-184, 185

LoadSeg (function), 183-184
LocateObject (call packet), 276

Location zero, 212

Lock (function), 175-176

Lock duplication, 173

Locks, 270-271

Logical devices, 14-16, 41, 43, 267
Logical position, 178

Long word, 187

Loops, 138-139

Macro assembler, 186-206

Macro directives, 204-205
MAKEDIR (user’s command), 72
MAP output, 212

MC68000 assembly language, 85
Memory, 153, 183-184, 247-248, 269
Memory variant, 196

MS-DOS, 168

Multiple strings, 119-120
Multi-processing, 4-5, 153

NEWCLI (user’s command), 72-73
Node, 245, 257

Null string, 131

Numbers, 194

Object code, 41

Object files, 207, 208, 244, 246-254
Qctal numbers, 194

Opcode field, 191

Open (function), 176

Open New File (call packet), 273
Open OId File (call packet), 272-273
Operand field, 191-192
Operand types, 192

Operand word, 187

Operation word, 187

Operators, 192

Output (function), 176

Output, console, 218-231
Output files, 137-138

Output processing, 124

Output queue, 153

OVERLAY (directive), 213-215
Overlay files, 208

Overlay nodes, 245, 257
Overlay number, 217

Overlay references, 216

Overlay supervisor, 207

Over table block, 257
Overlaying, 213

Packets, 271-278

Parallel port, 87

Parameter file, 208

Parameter substitution, 56-58
Parent (call packet), 275
ParentDir (function), 177, 275
Pointing variant, 131-132
Primary binary input, 208
Priority, 5, 153

Processes, 5, 154, 181-182, 263-266
Program control, 96-97
Program counter, 187

Program development, 158-159
Program encoding, 189-192
Program termination, 161
Program unit, 244-245, 246
Programming, 157-169
PROMPT (user’s command), 74
Prompts, 74, 122

PROTECT (user’s command), 29, 74-75

Qualified strings, 120, 123-124, 154
Qualifiers, 111-112, 154

298

INDEX

QUIT (user’s command), 75

RAM (device), 11-12

READ (developer’s command), 87-88
Read (function), 177

Read call, 273

Rebooting, 35, 41

Register (symbol), 194

Register values, 170

RELABEL (user’s command), 75-76
Relative (symbol), 194

Relocation, 249250

Rename (function), 178

RENAME (user’s command), 76-77
RenameDisk (call packet), 278
RenameObject (call packet), 278

Resident libraries, 158, 170-185, 208, 245, 255

Restart validation process, 21
Root block, 234-235

Root directory, 7, 154

RUN (user’s command), 77

Sample looping batch file, 6263
Scanned library, 208, 245

Screen editor, 51-52, 90-104
Screen output, 221-223

Scrolling, 95

SEARCH (user’s command), 77-78
Searching, 77-78, 99-100, 120
Seek (call packet), 274

Seek (function), 178

Segment lists, 269

Sequential files, 154

Serial line, 87

SetComment (call packet), 277
SetComment (function), 179, 277
SetProtect (call packet), 277
SetProtection (function), 179, 277
68000 microchip, 186-187

SKIP (user’s command), 78-79
SORT (user’s command), 79-80
Source file, 154

STACK (user’s command), 80-81
STATUS (user’s command), 81-82
Status register, 187
Startup-Sequence (execute file), 35
Storage, 89

Stream, 41

Strings, 119-120, 123, 130-132
Sun (computer), 162-168

Switch values, 120

Symbol definition directives, 199-200

Symbols, 193-194, 205-206, 215-216, 253,

257
Syntax, 118-121, 154, 170-171

System disk, 41
System management, 89

Terminal handler, 5-6, 154
Text alteration, 100-101

Text deletion, 94

Text insertion, 92-94, 142

Text string, 77

Textfiles, 31, 51-52

Time, 30, 4647, 180, 181-182
Trailing spaces, 143

TYPE (user’s command), 31, 82
Type commands, 134, 135

UnLoadSeg (option), 184
UnLock (option), 179-180, 277

Values, 171
Virtual terminal, 175
Volume name, 10, 41, 75, 154

WAIT (user’s command), 83
WaitChar (call packet), 274
WaitForChar (function), 180, 274
WHY (user’s command), 83-84
Wild card, 7, 154

WITH files, 210-211

Word, 187

Workbench, 22-23, 161-162
Workspace, uninitialized, 248
Write (function), 180

Write call, 273-274

XREF output, 212

	AmigaDOS User's Manual
	Chapter 1: Introducing AmigaDOS
	1.1 Chapter Overview
	1.2 Terminal Handling
	1.3 Using the Filing System
	1.3.1 Naming Files
	1.3.2 Using Directories
	1.3.3 Setting the Current Directory
	1.3.4 Setting the Current Device
	1.3.5 Attaching a Filenote
	1.3.6 Understanding Device Names
	1.3.7 Using Directory Conventions and Logical Devices

	1.4 Using AmigaDOS Commands
	1.4.1 Running Commands in the Background
	1.4.2 Executing Command Files
	1.4.3 Directing Command Input and Output
	1.4.4 Interrupting AmigaDOS
	1.4.5 Understanding Command Formats

	1.5 Restart Validation Process
	1.6 Commonly Used Commands: An Example Session
	How to Enable the Command Line Interface
	How to Make a New CLI Window
	Using the CLI
	Workbench and CLI: Their Relationships and Differences
	An Introduction to Some of the AmigaDOS Commands
	For a New User
	How to Begin
	Copying a Disk
	Formatting a Disk
	Making a Disk Bootable
	Relabeling a Disk
	Looking at the Directory
	Using the LIST Command
	Using the Protect Command
	Getting Information About the File System
	Changing Your Current Directory
	Setting the Date and Time
	Redirecting the Output of a Command
	Typing a Textfile to the Screen
	Changing the Name of a File
	Deleting Files
	Copying Files
	Creating a New Directory
	Is My File Somewhere on This Disk?
	Doing Something Automatically at Boot Time
	Creating a New CLI
	Closing a CLI
	Closing Comments

	1.7 Conventions Used

	Chapter 2: AmigaDOS Commands
	2.1 AmigaDOS User's Commands
	;
	><
	ASSIGN
	BREAK
	CD
	COPY
	DATE
	DELETE
	DIR
	DISKCOPY
	ECHO
	ED
	EDIT
	ENDCLI
	EXECUTE
	FAILAT
	FAULT
	FILENOTE
	FORMAT
	IF
	INFO
	INSTALL
	JOIN
	LAB
	LIST
	MAKEDIR
	NEWCLI
	PROMPT
	PROTECT
	QUIT
	RELABEL
	RENAME
	RUN
	SEARCH
	SKIP
	SORT
	STACK
	STATUS
	TYPE
	WAIT
	WHY

	2.2 AmigaDOS Developer's Commands
	ALINK
	ASSEM
	DOWNLOAD
	READ

	2.3 AmigaDOS Commands Quick Reference Card

	Chapter 3: ED—The Screen Editor
	3.1 Introducing ED
	3.2 Immediate Commands
	3.2.1 Cursor Control
	3.2.2 Inserting Text
	3.2.3 Deleting Text
	3.2.4 Scrolling
	3.2.5 Repeating Commands

	3.3 Extended Commands
	3.3.1 Program Control
	3.3.2 Block Control
	3.3.3 Moving the Current Cursor Position
	3.3.4 Searching and Exchanging
	3.3.5 Altering Text
	3.3.6 Repeating Commands

	Quick Reference Card

	Chapter 4: EDIT—The Line Editor
	4.1 Introducing EDIT
	4.1.1 Calling EDIT
	4.1.2 Using EDIT Commands
	4.1.2.1 The Current Line
	4.1.2.2 Line Numbers
	4.1.2.3 Selecting a Current Line
	4.1.2.4 Qualifiers
	4.1.2.5 Making Changes to the Current Line
	4.1.2.6 Deleting Whole Lines
	4.1.2.7 Inserting New Lines

	4.1.3 Leaving EDIT
	4.1.4 A Combined Example: Pulling It All Together

	4.2 A Complete Specification of EDIT
	4.2.1 Command Syntax
	4.2.1.1 Command Names
	4.2.1.2 Arguments
	4.2.1.3 Strings
	4.2.1.4 Multiple Strings
	4.2.1.5 Qualified Strings
	4.2.1.6 Search Expressions
	4.2.1.7 Numbers
	4.2.1.8 Switch Values
	4.2.1.9 Command Groups
	4.2.1.10 Command Repetition

	4.2.2 Processing EDIT
	4.2.2.1 Prompts
	4.2.2.2 The Current Line
	4.2.2.3 Line Numbers
	4.2.2.4 Qualified Strings
	4.2.2.5 Output Processing
	4.2.2.6 End-of-File Handling

	4.2.3 Functional Groupings of EDIT Commands
	4.2.3.1 Selection of a Current Line
	4.2.3.2 Line Insertion and Deletion

	4.2.4 Line Windows
	4.2.4.1 The Operational Window
	4.2.4.2 Single Character Operations on the Current Line

	4.2.5 String Operations on the Current Line
	4.2.5.1 Basic String Operations
	4.2.5.2 The Null String
	4.2.5.3 Pointing Variant
	4.2.5.4 Deleting Parts of the Current Line

	4.2.6 Miscellaneous Current Line Commands
	4.2.6.1 Splitting and Joining Lines

	4.2.7 Inspecting Parts of the Source: The Type Commands
	4.2.8 Control of Command, Input, and Output Files
	4.2.8.1 Command Files
	4.2.8.2 Input Files
	4.2.8.3 Output Files

	4.2.9 Loops
	4.2.10 Global Operations
	4.2.10.1 Setting Global Changes
	4.2.10.2 Cancelling Global Changes
	4.2.10.3 Suspending Global Changes

	4.2.11 Displaying the Program State
	4.2.12 Terminating an EDIT Run
	4.2.13 Current Line Verification
	4.2.14 Miscellaneous Commands
	4.2.15 Abandoning Interactive Editing

	Quick Reference Card

	Appendix: Error Codes and Messages
	User Errors
	Programmer Errors
	Glossary

	AmigaDOS Developer's Manual
	Chapter 1: Programming on the Amiga
	1.1 Introduction
	1.2 Program Development for the Amiga
	1.2.1 Getting Started
	2.2.2 Calling Resident Libraries
	1.2.3 Creating an Executable Program

	1.3 Running a Program Under the CLI
	1.3.1 Initial Environment in Assembler
	1.3.2 Initial Environment in C
	1.3.3 Failure of Routines
	1.3.4 Terminating a Program

	1.4 Running a Program Under the Workbench
	1.5 Cross Development
	1.5.1 Cross Development on a Sun Microsystem
	1.5.2 Cross Development Under MS-DOS
	1.5.3 Cross Development on Other Computers

	Chapter 2: Calling AmigaDOS
	2.1 Syntax
	2.1.1 Register Values
	2.1.2 Case
	2.1.3 Boolean returns
	2.2.4 Values
	2.2.5 Format, Argument, and Result

	2.2 AmigaDOS Functions
	File Handling
	Close
	CreateDir
	CurrentDir
	DeleteFile
	DupLock
	Examine
	ExNext
	Info
	Input
	IoErr
	Islnteractive
	Lock
	Open
	Output
	ParentDir
	Read
	Rename
	Seek
	SetComment
	SetProtection
	UnLock
	WaitForChar
	Write

	Process Handling
	CreateProc
	DateStamp
	Delay
	DeviceProc
	Exit

	Loading Code
	Execute
	LoadSeg
	UnLoadSeg

	Quick Reference Card

	Chapter 3: The Macro Assembler
	3.1 Introduction to the 68000 Microchip
	3.2 Calling the Assembler
	3.3 Program Encoding
	3.3.1 Comments
	3.3.2 Executable Instructions
	3.3.2.1 Label Field
	3.3.2.2 Local Labels
	3.3.2.3 Opcode Field
	3.3.2.4 Operand Field
	3.3.2.5 Comment Field

	3.4 Expressions
	3.4.1 Operators
	3.4.2 Operand Types for Operators
	3.4.3 Symbols
	3.4.4 Numbers

	3.5 Addressing Modes
	3.6 Variants on Instruction Types
	3.7 Directives
	Assembly Control Directives
	Symbol Definition Directives
	Data Definition Directives
	Listing Control Directives
	Conditional Assembly Directives
	Macro Directives
	General Directives

	Chapter 4: The Linker
	4.1 Introduction
	4.2 Using the Linker
	4.2.1 Command Line Syntax
	4.2.2 WITH Files
	4.2.3 Errors and Other Exceptions
	4.2.4 MAP and XREF Output

	4.3 Overlaying
	4.3.1 OVERLAY Directive
	4.3.2 References to Symbols
	4.3.3 Cautionary Points

	4.4 Error Codes and Messages

	Appendix: Console Input and Output on the Amiga
	Introduction
	Helpful AmigaDOS Commands
	CON Keyboard Input
	CON Screen Output
	RAW Screen Output
	RAW Keyboard Input
	Selection of RAW Input Events:
	RAW Input Event Types

	AmigaDOS Technical Reference Manual
	Chapter 1: The Filing System
	1.1 AmigaDOS File Structure
	1.1.1 Root Block
	1.1.2 User Directory Blocks
	1.1.3 File Header Block
	1.1.4 File List Block
	1.1.5 Data Block

	1.2 DISKED—The Disk Editor

	Chapter 2: Amiga Binary File Structure
	2.1 Introduction
	2.1.1 Terminology
	2.2 Object File Structure
	2.2.1 hunk_unit (999/3E7)
	2.2.2 hunk_name (1000/3E8)
	2.2.3 hunk_code (1001/3E9)
	2.2.4 hunk_data (1002/3EA)
	2.2.5 hunk_bss (1003/3EB)
	2.2.6 hunk_reloc32 (1004/3EC)
	2.2.7 hunk_relocl6 (1005/3ED)
	2.2.8 hunk_reloc8 (1006/3EE)
	2.2.9 hunk_ext (1007/3EF)
	2.2.10 hunk_symbol (1008/3F0)
	2.2.11 hunk_debug (1009/3F1)
	2.2.12 hunk__end (1010/3F2)

	2.3 Load Files
	2.3.1 hunk_header (1011/3F3)
	2.3.2 hunk_overlay (1013/3F5)
	2.3.3 hunk_break (1014/3F6)

	2.4 Examples

	Chapter 3: AmigaDOS Data Structures
	3.1 Introduction
	3.2 Process Data Structures
	3.3 Global Data Structure
	3.3.1 Info Substructure

	3.4 Memory Allocation
	3.5 Segment Lists
	3.6 File Handles
	3.7 Locks
	3.8 Packets
	3.8.1 Packet Types

	Chapter 4: AmigaDOS Additional Information for the Advanced Developer
	Hunk Overlay Table—Overview
	ATOM: (Alink Temporary Object Modifier)
	Creating a New Device to Run Under AmigaDOS
	Making New Disk Devices
	Using AmigaDOS Without Workbench/Intuition

	Index

